MYCORRHIZAL TECHNOLOGY AS A BIOINSUMPTION TO PRODUCE PHENOLIC COMPOUNDS OF IMPORTANCE TO THE HERBAL MEDICINE INDUSTRY
DOI:
https://doi.org/10.33448/rsd-v10i2.12856Keywords:
Phytochemistry; AMF; Glomeromycota.Abstract
The arbuscular mycorrhizal fungi (AMF) are microorganisms that form mutualistic symbiosis with the most studied plant species. Such fungi are known to confer benefits to plant species, moreover, can improve the edaphic environment that are found. In this regard, the first research of this theme were about the benefits proportionated by AMF in relation to the growth and plant production; afterwards, the number of studies that registered the AMF benefits in increasing the compounds production from primary and secondary metabolism in plants increased, especially in plants of interest to food industry, cosmetics and pharmaceutical. Several biomolecules were studied, such as essential oils, phenolic compounds, and nitrogen compounds. Therefore, this review aimed to compile the research studies that reported the mycorrhizal symbiosis benefits in optimize the production of phenolic compounds with therapeutic potential, highlighting those developed in Brazil.
References
Abbaspour, H., Saeidi-Sar, S., Afshari, H., & Abdel-Wahhab, M. A. (2012)Tolerance of mycorrhiza infected pistachio (Pistacia vera L.) seedling to drought stress under glasshouse conditions. Journal Plant Physiology, 169, 704-09.
Abdell-Fattah, G. M., El-Haddad, S. A., Hafez, E. E., & Rashad, Y. M. (2011). Induction of defense responses in common bean plants by arbuscular mycorrhizal fungi. Microbiological Research, 166, 268-281.
Abeynayake, S.W., Panter, S., Chapman, R., Webster, T., Rochfort, S., Mouradov, A., & Spangenberg, G. (2011). Biosynthesis of proanthocyanidins in white clover flowers: cross talk within the flavonoid pathway. Journal Plant Physiology, 158, 666-678.
Abud-Archila, M., Luján-Hidalgo, M. C., López-Pérez, J. M., Ordaz-Rivera, J., Ruiz-Valdiviezo, V. M., & Oliva-Llaven M. A, Gutiérrez-Miceli, F. A. (2018) Growth and fruit chemical characteristics of blackberry (Rubus fruticosus) cultivated with vermicompost, Glomus mosseae and phosphate rock. Compost Science & Utilization, 26, 1-7.
Abu-Zeyad, R., Khan, A.G., & Khoo, C. (1999) Occurrence of arbuscular mycorrhiza in Castanospermum austral A. Cunn. & C. Fraser and effects on growth and production of castanospermine. Mycorrhiza, 9, 111-117.
Akiyama, K., & Hayashi, H. (2002) Arbuscular mycorrhizal fungus promoted accumulation of two nem triterpenoids in Cucumber roots. Bioscience, Biotechnology and Biochemistry, 66, 762-769.
Aktar, M. S., & Siddiqui, Z. A. (2008) Glomus intraradices, Pseudomonas alcaligenes, Bacillus pumilus as effective biocontrol agents for the root-rot disease complex of chickpea (Cicer arietinum L.). Journal of General Plant Pathology, 74, 53-60.
Al-Ghamdi, A. A. M., Jais, H. M., & Khogali, A. (2012) Relationship between the status of arbuscular mycorrhizal colonization in the roots and heavy metal and flavonoid contents in the leaves of Juniperus procera. Journal of Ecology and The Natural Environment, 4, 212-218.
Aliferis, K. A., Chamoun, R., & Jabaji, S. (2015) Metabolic responses of willow (Sali x purpurea L.) leaves to mycorrhization as revealed by mass spectrometry and 1HNMR spectroscopy metabolite profiling. Frontiers in Plant Science, 6, 344.
Almeida, C. L., Sawaya, A. C. H. F., & Andrade, S. A. L. (2018) Mycorrhizal influence on the growth and bioactive compounds composition of two medicinal plants: Mikania glomerata Spreng. and Mikania laevigata Sch. Bip. ex Baker (Asteraceae). Brazilian Journal of Botany, 41, 233-240.
Amanifar, S., & Toghranegar, Z. (2020) The efficiency of arbuscular mycorrhiza for improving tolerance of Valeriana officinalis L. and enhancing valerenic acid accumulation under salinity stress. Industrial Crops and Products, 147, 112234.
Amiri, R., Nikbakht, A., Rahimmalek, M., & Hosseini, H. (2017) Variation in the essential oil composition, Antioxidant capacity, and physiological characteristics of Pelargonium graveolens L. inoculated with two species of mycorrhizal fungi under water deficit conditions. Journal of Plant Growth Regulation, 36, 502-515.
Andrade, S. A. L., Gratão, P. L., Azevedo, R. A., Silveira, A. P. D., Schiavinato, M. A., & Paulo Mazzafera, P. (2010) Biochemical and physiological changes in jack bean under mycorrhizal symbiosis growing in soil with increasing Cu concentrations. Environmental and Experimental Botany, 68, 198-207.
Andrade, S. A. L., Malik, S., Sawaya, A. C. H. F., Bottcher, A., & Mazzafera, P. (2013) Association with arbuscular mycorrhizal fungi influences alkaloid synthesis and accumulation in Catharanthus roseus and Nicotiana tabacum plants. Acta Physiologiae Plantarum, 35, 867-880.
Antunes, P. M., Varennes, A., Rajcan, I., & Goss, M. J. (2006) Accumulation of specific flavonoids in soybean (Glycine max (L.) Merr.) as a function of the early tripartite symbiosis with arbuscular mycorrhizal fungi and Bradyrhizobium japonicum (Kirchner) Jordan. Soil Biology and Chemistry, 38, 1234-1242.
Araim, G., Saleem, A., Arnason, J. T., & Charest, C. (2009) Root colonization by arbuscular mycorrizal (AM) fungus increases growth and secondary metabolism of purple coneflower, Echinacea purpurea (L.) Moench. Journal of Agricutural and Food Chem, 57, 2255-2258.
Aseel, D. G., Rashad, Y. M., & Hammad, R. M. (2019) Arbuscular Mycorrhizal Fungi trigger transcriptional expression of flavonoid and chlorogenic acid biosynthetic pathways genes in tomato against Tomato mosaic Virus. Scientifics Reports, 9, 9692.
Asensio, D., Rapparini, F., & Penuelas, J. (2012) AM fungi root colonization increases the production of essential isoprenoids vs. nonessential isoprenoids especially under drought stress conditions or after jasmonic acid application. Phytochemistry, 77, 149-161.
Attarzadeh, M., Balouchi, H., Rajaie, M., Dehnavi, M. M., & Salehi, A. (2020) Improving growth and phenolic compounds of Echinacea purpurea root by integrating biological and chemical resources of phosphorus under water deficit stress. Industrial Crops and Products, 154, 112763.
Avio, L., Sbranaa, C., Giovannetti, M., & Frassinetti, S. (2017) Arbuscular mycorrhizal fungi affect total phenolics content and antioxidant activity in leaves of oak leaf lettuce varieties. Scientia Horticulturae, 224, 265-271.
Avio, L., Maggini, R., Ujvári, G., Incrocci, L., Giovannetti, M., & Turrini, A. (2020) Phenolics content and antioxidant activity in the leaves of two artichoke cultivars are differentially affected by six mycorrhizal symbionts. Scientia Horticulturae, 264, 109153.
Bączek, K. B., Wiśniewsk, M., Przybył, J. L., Kosakowska, O, Węglarz, Z. (2019) Arbuscular mycorrhizal fungi in chamomile (Matricaria recutita L.) organic cultivation. Industrial Crops and Products, 140, 111562.
Banuelos, J., Alarcón, A., Larsen, J., Cruz-Sánchez, S., & Trejo, D. (2014) Interactions between arbuscular mycorrhizal fungi and Meloidogyne incognita in the ornamental plant Impatiens balsamina. Journal of Soil Science and Plant Nutrition, 14, 63-74.
Baslam, M., Garmendia, I., & Goicoechea, N. (2011) Arbuscular Mycorrhizal Fungi (AMF) improved growth and nutritional quality of greenhouse-grown Lettuce. Journal of Agricultural and Food Chemistry, 59, 5504-5515.
Baslam, M., & Goicoechea, N. (2012) Water deficit improved the capacity of arbuscular mycorrhizal fungi (AMF) for inducing the accumulation of antioxidant compounds in lettuce leaves. Mycorrhiza, 22, 347-359.
Baslam, M., Esteban, R., García-Plazaola, J. I., & Goicoechea, N. (2013a) Effectiveness of arbuscular mycorrhizal fungi (AMF) for inducing the accumulation of major carotenoids, chlorophylls and tocopherol in green and red leaf lettuces. Applied Microbiology and Biotechnology, 97, 3119-3128.
Baslam, M., Idoia Garmendia, I., Nieves Goicoechea, N. (2013b) The arbuscular mycorrhizal symbiosis can overcome reductions in yield and nutritional quality in greenhouse-lettuces cultivated at inappropriate growing seasons. Scientia Horticurae, 164, 145-154.
Battini, F., Bernardi, R., Turrini, A., Agnolucci, M., & Giovannetti, M. (2016) Rhizophagus intraradices or its associated bacteria affect gene expression of key enzymes involved in the rosmarinic acid biosynthetic pathway of basil. Mycorrhiza, 26, 699-707.
Bencherif, K., Djaballah, Z., Brahimi, F., Boutekrabt, A., Dalpè, Y. A., & Sahraoui, L. (2019) Arbuscular mycorrhizal fungi affect total phenolic content and antimicrobial activity of Tamarix gallica in natural semi-arid Algerian areas. South African Journal of Botany, 125, 39-45.
Bharti, N., Barnawal, D., Shukla, S., Tewari, S. K., Katiyar, R. S., & Kalra, A. (2016) Integrated application of Exiguobacterium oxidotolerans, Glomus fasciculatum, and vermicompost improves growth, yield and quality of Mentha arvensis in salt-stressed soils. Industrial Crops and Products, 83, 717-728
Binet, M., Tuinen, D., Deprêtre, N., Koszela, N., Chambon, C., & Gianinazzi, S. (2011) Arbuscular mycorrhizal fungi associated with Artemisia umbelliformis Lam, an endangered aromatic species in Southern French Alps, influence plant P and essential oil contentes. Mycorrhiza, 21, 523-535.
Bona, E., Todeschini, V., Cantamessa, S, Cesaro, P., Copetta, A., Lingua, G., Gamalero, E., Berta, G., & Massa, N. (2018) Combined bacterial and mycorrhizal inocula improve tomato quality at reduced fertilization. Scientia Horticulturae, 234, 160-165.
Burducea, M., Zheljazkov, V.D., Dinchev, I., Lobiu, A., Teliban, G., Stoleru, V., Zamfirache, M. 2018. Fertilization modifies the essential oil and physiology of basil varieties. Industrial Crops and Products, 121, 282-293.
Camprubi, A., Zárate, I.A., Adholeya, A., Lovato, P. E., & Calvet, C. (2015) Field performance and essential oil production of mycorrhizal Rosemary in restoration low-nutrient soils. Land Degradation Development, 26, 793-799.
Carlsen, S. C. K., Understrup, A., Fomsgaard, I. S., Mortensen, A. G., & Ravnskov, S. (2008) Flavonoids in roots of white clover: interaction of arbuscular mycorrhizal fungi and a pathogenic fungus. Plant and Soil, 302, 33-43.
Casarrubias-Castillo, K., Montero-Vargas, J. M., Dabdoub-González, N., Winkler, R., Martinez-Gallardo, N. A., Aviles-Arnaut, H., & Délano-Frier, J.P. (2020) Distinct gene expression and secondary metabolite profiles for suboptimal mycorrhizal colonization in wild-type and the jasmonic acid deficient spr2 tomato mutant. Peer- Reviewed & Open Acess, 8: e8888.
Caser, M., Victorino, I. M. M., Demasis S., Berruti, A., Donno, D., & Lumini, E. (2019) Saffron cultivation in marginal alpine environments: how AMF inoculation modulates yield and bioactive compounds. Agronomy, 9, 12.
Castellanos-Morales, V., Villegas, J., Wendelin, S., Vierheilig, H., Ederc, R., & Cardenas-Navarro, R. (2010) Root colonisation by the arbuscular mycorrhizal fungus Glomus intraradices alters the quality of strawberry fruits (Fragaria × ananassa Duch.) at different nitrogen levels. Journal Science Food Agriculture, 90, 1774-1782.
Cecatto, A. P., Ruiz, F. M., Calvete, E.O., Martínez, J., & Palencia, P. (2016) Mycorrhizal inoculation affects the phytochemical content in strawberry fruits. Acta Scientarum, 38, 227-237.
Ceccarelli, N., Curadi, M., Martelloni, L., Sbrana, C., Picciarelli, P., & Giovannetti, M. (2010) Mycorrhizal colonization impacts on phenolic contente and antioxidant properties of artichoke leaves and flower heads two years after field transplant. Plant and Soil, 335, 311-323.
Chang, W., Sui, X., Fan, X., Jia, T., & Song, F. (2018) Arbuscular Mycorrhizal Symbiosis modulates antioxidant response and ion distribution in salt-stressed Elaeagnus angustifolia seedlings. Frontiers in Microbiology, 9, 652.
Chaudhary, V., Kapoor, R., & Bhatnagar, A. K. (2008) Effectiveness of two arbuscular mycorrhizal fungi on concentrations of essential oil and artemisinin in three accessions of Artemisia annua L. Applied Soil Ecology, 40, 174-181.
Chen, S., Jin, W., Liu, A., Zhang, S., Liu, D., Wang, F., Lin, X., & He, C. (2013) Arbuscular mycorrhizal fungi (AMF) increase growth and secondary metabolism in cucumber subjected to low temperature stress. Scientia Horticulturae, 160, 222-229.
Chiomento, J. L. T., Costa, R. C., Nardi, F. S., Trentin, N. S., Nienow, A. A., & Calvete, E. O. (2020) Arbuscular mycorrhizal fungi communities improve the phytochemical quality of strawberry. The Journal of Horticultural Science and Biotechnology, 94, 653-663.
Copetta, A., Lingua, G., & Berta, G. (2006) Effects of three AM fungi on growth, distribution of glandular hairs, and essential oil production in Ocimum basilicum L. var. Genovese. Mycorrhiza, 16, 485- 494.
Cosme, M., Franken, P., Mewis, I., Baldermann, S., & Wurst, S. (2014) Arbuscular mycorrhizal fungi affect glucosinolate and mineral element composition in leaves of Moringa oleifera. Mycorrhiza, 24, 565-570.
Cordeiro, E. C., Resende, J. T. V., Córdova, K. R. V., Nascimento, D. A., Saggin Júnior, O. J., Zeist, A. R., & Favaro, R., (2019) Arbuscular mycorrhizal fungi action on the quality of strawberry fruits. Horticultura Brasileira, 37, 437-444.
Cui, L., Guo, F., Zhang, J., Yang, S., Jing Meng, J., & Geng, Y. (2019) Synergy of arbuscular mycorrhizal symbiosis and exogenous Ca2+ benefits peanut (Arachis hypogaea L.) growth through the shared hormone and flavonoid pathway. Scientific Reports, 9, 16281.
Cruz, R. M. S., Alberton, O., Lorencete, M. S., Cruz, G. L. S., Gasparotto-Junior, A., Cardozo-Filho, L., & Souza, S. G. H. (2020) Phytochemistry of Cymbopogon citratus (D.C.) Stapf inoculated with arbuscular mycorrhizal fungi and plant growth promoting bacteria. Industrial Crops and Products, 149, 112340.
Damoradan, P. N., Udaiyan, K., & Jee, H. J. (2010). Biochemical changes in cotton plants by Arbuscular Mycorrhizal colonization. Research in Biotechnology, 1, 06-14.
Dave, S., & Tarafdar, J. C. (2011) Stimulatory synthesis of saponin by mycorrhizal fungi in safed musli (Chlorophytum borivilianum) tubers. International Research Journal of Agricultural Science and Soil Science, 1, 137-141.
Davinson, J., Moora, M., Öpik, M., Adholeya, A., Ainsaar, L., Bâ, A., Burla, S., Diedhiou, A.G., Hiiesalu, I., Jairus, T., Johnson, N.C., Kane,A., Koorem, K., Kochar, M., Ndiaye, C., Pärtel, M., Reier, Ü., Saks, Ü., Singh, R., Vasar, M., & Zobel, M. (2015) Global assessment of arbuscular mycorrhizal fungus diversity reveals very low endemism. Science, 349, 970-973.
Domokos, E., Jakab-Farkas, L., Darkó, B., Biró-Janka, B., Mara, G., Albert, C., & Balog, A. (2018) Increase in Artemisia annua plant biomass artemisinin content and guaiacol peroxidase activity using the arbuscular mycorrhizal fungus Rhizophagus irregularis. Frontiers in Plant Science, 9, 478.
Dutta, S. C., & Neog, B. (2016). Accumulation of secondary metabolites in response to antioxidante activity of turmeric rhizomes co-inoculated with native arbuscular mycorrhizal fungi and plant growth promoting rhizobacteria. Scientia Horticulturae, 204, 179-184.
Eftekhari, M., Alizadeh, M., & Ebrahimi, P. (2012) Evaluation of the total phenolics and quercetin content of foliage in mycorrhizal grape (Vitis vinifera L.) varieties and effect of postharvest drying on quercetin yield. Industrial Crops and Products, 38, 160-165.
Espinosa, F., Garrido, I., Ortega, A., Casimiro, I., & Álvarez-Tinaut, M. C. (2014) Redox Activities and ROS, NO and phenylpropanoids production by axenically cultured intact olive seedling roots after interaction with a mycorrhizal or a pathogenic fungus. Plos One, 9, e100132.
Fan, X., & Song, F. (2018) Responses of nonenzymatic antioxidants to atrazine in arbuscular mycorrhizal roots of Medicago sativa L. Mycorrhiza, 28, 567-571.
Ferrari, M. P. S., Queiroz, M. S., Andrade, M. M., Alberton, O., Gonçalves, J. E,, Gazim, Z. C. et al., (2020) Substrate-associated mycorrhizal fungi promote changes in terpene composition, antioxidant activity, and enzymes in Curcuma longa L. acclimatized plants. Rhizosphere, 13, 100191.
Ferrol, N., Azcón-Aguilar, C., Pérez-Tienda, J. (2019). Review: Arbusuclar mycorrhizas as key players in sustainable lant phosphorus acquisition: an overview on the mechanisms involved. Plant Science, 280, 441-447.
Fontana, A., Reichelt, M., Hempel, S., Gershenzon, J., & Unsicker, S. B. (2009) The Effects of Arbuscular Mycorrhizal Fungi on Direct and Indirect Defense Metabolites of Plantago lanceolata L. Journal of Chemical Ecology, 35, 833-843.
Freitas, M. S. M., Carvalho, A. J. C., & Carneiro, R. F. V. (2004a). Crescimento e produção de fenóis totais em carqueja [Baccharis trimera (Less.) DC.] em resposta à inoculação com fungos micorrízicos arbusculares, na presença e na ausência de adubação. Revista Brasileira de Plantas Medicinais, 6, 30-34.
Freitas, M. S. M., Martins, M. A., & Vieira, I. J. C. (2004b). Produção e qualidade de óleos essenciais de Mentha arvensis em resposta à inoculação de fungos micorrízicos arbusculares. Pesquisa Agropecuária Brasileira, 39, 887-894.
Gabriele, M., Gerardi, C., Longo, V., Lucejko, J., Degano, I., Pucci, L., & Domenice, V. (2016) The impact of mycorrhizal fungi on Sangiovese red wine production: Phenolic compounds and antioxidant properties. LWT - Food Science and Technology, 72, 310-316.
Garg, N.,& Singla, P. (2015) Naringenin- and Funneliformis mosseae-Mediated Alterations in Redox State Synchronize Antioxidant Network to Alleviate Oxidative Stress in Cicer arietinum L. Genotypes Under Salt Stress. Journal of Plant Growth Regulation, 34, 595-610.
Geneva, M. P., Stancheva, I. V., Boychinova, M. M., Mincheva, N. H., & Yonova, P. A. (2010) Effects of foliar fertilization and arbuscular mycorrhizal colonization on Salvia officinalis L. growth, antioxidant capacity, and essential oil composition. Journal of the Science of Food Agriculture, 90, 696-702.
Ghanbari, J., Khajoei-Nejad, G., Ruth, S. M., & Aghighi, S. (2019) The possibility for improvement of flowering, corm properties, bioactive compounds, and antioxidant activity in saffron (Crocus sativus L.) by different nutritional regimes. Industrial Crops and Products, 135, 301-310.
Giovannetti, M., Avio, L., Barale, R., Ceccarelli, N., Cristofani, R., Iezzi, A., Mignolli, F., Picciarelli, P., Pinto, B., Reali, D., Sbrana, C., & Scarpato, R. (2012) Nutraceutical value and safety of tomato fruits produced by mycorrhizal plants. British Journal of Nutricion, 107, 242-251.
Grandmaison, J., Olah, G. M., Calsteren, M. V., & Furlan, V. (1993) Characterization and localization of plant phenolics likely involved in the pathogen resistance expressed by endomycorrhizal roots. Mycorrhiza, 3, 155-1641.
Gualandi Jr, R. J., Augé, R. M., Kopsell, D. A., Ownley, B. H., Chen, F., Toler, H. D., Dee , M. M., & Gwinn, K. D. 2014. Fungal mutualists enhance growth and phytochemical content in Echinacea purpurea. Symbiosis, 63, 111-121.
Gupta, M. L., Prassad, A., Ram, M., Kumar, S. (2002) Effect of the vesicular-arbuscular mycorrhizal (VAM) fungus Glomus fasciculatum on the essential oil yield related characters and nutriente acquisition in the crops of diferente cultivars of menthol (Mentha arvensis) under field condictions. Bioresource Technology, 81, 77-79.
Gutjahr, C., Siegler, H., Haga, K., Iino, M., & Paszkowski, U. (2015) Full establishment of arbuscular mycorrhizal symbiosis in rice occurs independently of enzymatic jasmonate biosynthesis. PLoS One, 10, e0123422.
Hajiboland, R., Moradtalab, N., Aliasgharzad, N., Eshaghi, Z., & Feizy, J. (2018) Silicon influences growth and mycorrhizal responsiveness in strawberry plants. Physiology and Molecular Biology of Plants, 23, 1103-1115.
Halvorson, J. J., & Gonzalez, J. M. (2008) Tannic acid reduces recovery of water-soluble carbon and nitrogen from soil and affects the composition of Bradford-reactive soil protein. Soil Biology and Chemistry, 40, 186-197.
Hart, M., Ehret, D. L., Krumbein, A., Leung, C., Murch, S., Turi, C., & Franken, P. (2015) Inoculation with arbuscular mycorrhizal fungi improves the nutritional value of tomatoes. Mycorrhiza, 25, 359-376.
Hashem, A., Abd_Allah, E. F., Alqarawi, A. A., Al-Huqail, A. A., & Shah, M. A. (2016) Induction of Osmoregulation and Modulation of Salt Stress in Acacia gerrardii Benth. by Arbuscular Mycorrhizal Fungi and Bacillus subtilis (BERA 71). Biomed Research International, ID 6294098, 11 pages.
Hashem, A., Alqarawi, A. A., Radhakrishnan, R., Al-Arjani, A. F,. Aldehaish, H. A., Dilfuza Egamberdieva, D., & Abd_Allah, E.F. (2018) Arbuscular mycorrhizal fungi regulate the oxidative system, hormones and ionic equilibrium to trigger salt stress tolerance in Cucumis sativus L. Saudi Journal of Biological Sciences, 25, 1102-1114.
Hassiotis, C.N. (2018) The role of aromatic Salvia officinalis L. on the development of two mycorrhizal fungi. Biochemical Systematics and Ecology, 77, 61-67.
Hazzoumi, Z., Moustakime, Y., Elharchli, E., & Joutei, K. A. (2015) Effect of arbuscular mycorrhizal fungi (AMF) and water stress on growth, phenolic compounds, glandular hairs, and yield of essential oil in basil (Ocimum gratissimum L). Chemical and Biological Technologies in Agriculture, 2.
He, F., Zhang, H., & Tang, M. (2016) Aquaporin gene expression and physiological responses of Robinia pseudoacacia L. to the mycorrhizal fungus Rhizophagus irregularis and drought stress. Mycorrhiza, 26, 311-323.
Hegazi, A. M., El-Shraiy, A. M., & Ghoname, A. A. (2017) Mitigation of Salt Stress Negative Effects on Sweet Pepper Using Arbuscular Mycorrhizal Fungi (AMF), Bacillus megaterium and Brassinosteroids (BRs). Gesunde Pflanz, 69, 91-102.
Hemashenpagan, N., & Selvaraj, T. (2011) Effect of arbuscular mycorrhizal (AM) fungus and plant growth promoting rhizomicroorganisms (PGPR’s) on medicinal plant Solanum viarum seedlings. Journal of Environmental Biology, 32, 579-583.
Heydarizadeh, P., Zahedi, M., Sabzalian, M. R., & Ataii, E. (2013) Mycorrhizal infection, essential oil content and morpho phenological characteristics variability in three mint species. Scientia Horticulturae, 153, 136-142.
Hristozkova, M., Geneva, M., Stancheva, I., Boychinova, M., & Efrosina Djonova, E. (2016) Contribution of arbuscular mycorrhizal fungi in attenuation of heavy metal impact on Calendula officinalis development. Applied Soil Ecology, 101, 57-63.
Hristozkova, M., Geneva, M., Stancheva, I., Iliev, I., & Azcon-Aguilar, C. (2017) Symbiotic association between golden berry (Physalis peruviana) and arbuscular mycorrhizal fungi in heavy metal-contaminated soil. Journal of Plant Protection Research, 57, 173-184.
Hristozkova, M., Gigova, L., Geneva, M., Stancheva, I., Velikova, V., & Marinova, G. (2018) Influence of Mycorrhizal Fungi and Microalgae Dual Inoculation on Basil Plants Performance. Gesunde Pflanz, 70, 99-107.
Ibrahim, M. H., & Jaafar, H. Z. E. (2011) Involvement of carbohydrate, protein and phenylanine ammonia lyase in Up-Regulation of secondary Metabolites in Labisia pumila under Various CO2 and N2 Levels. Molecules, 16, 4172-4190.
Jaiti, F., Kassami, M., & Meddich El Hadrami, I. (2008) Effect of arbuscular mycorrhization on the accumulation of hydroxycinnamic acid derivatives in date palm seedlings challenged with Fusarium oxysporum f. sp. Albedinis. Journal of Phytopathology, 156, 641-646.
Jaroszewska, A., & Biel, W. (2017) Chemical composition and antioxidant activity of leaves of mycorrhized seabuckthorn (Hippophae rhamnoides L.). Chilean Journal of Agriculral Research, 77, 155-162.
Jugran, A. K., Bahukhandi, A., Dhyani, P., Bhatt, I. D., Rawal, R. S., Nandi, S. K., & Palni, L. M. S. 2015. The effect of inoculation with mycorrhiza: AM on growth, phenolics, tannins, phenolic composition and antioxidante activity in Valeriana jatamansi Jones. Journal of Soil Science and Plant Nutrition, 15, 1036-1049.
Julsing, M. K., Koulman, A., Herman, Woerdenbag, J., Quax, W. J., & Kayser, O. (2006). Combinatorial biosynthesis of medicinal plant secondary metabolites. Biomolecular Engineering, 23, 265-279.
Kapoor, R., Giri, B., & Murkerji, K. G. (2002a) Glomus macrocarpum: a potential bioinoculant to improve essential oil quality and concentration in Dill (Anethum graveolens L.) and Carum (Trachyspermum ammi (Linn.) Sprague). World Journal of Microbiology and Biotechnology, 18, 459-463.
Kapoor, R., Giri, B., & Murkerji, K. G. (2002b) Mycorrhization of coriander (Coriandrum sativum L) to enhance the concentration and quality of essential oil. Journal of the Science of Food and Agriculture, 82, 339-342.
Kapoor, R., Giri, B., & Mukerji, K. G. (2004). Improved growth and essential oil yield and qualityin Foeniculum vulgare mill on mycorrhizal inoculation supplemented with P-fertilizer. Bioresource Technology, 93, 307-311.
Kapoor, R., Chaudhary, V., & Bhatnagar, A. K. (2007) Effects of arbuscular mycorrhiza and phosphorus application on artemisinin concentration in Artemisia annua L. Mycorrhiza, 17, 581-587.
Kapoor, R., Anand, G., Gupta, P., & Mandal, S. (2017) Insight into the mechanisms of enhanced production of valuable terpenoids by arbuscular mycorrhiza. Phytochemistry Reviews, 16, 677-692.
Kara, Z., Arslanb, D., Güler, M., & Güler, S. (2015) Inoculation of arbuscular mycorrhizal fungi and application of micronized calcite to olive plant: Effects on some biochemical constituents of olive fruit and oil. Scientia Horticulturae, 185, 219-227.
Karagiannidis, N., Thomidis, T., Lazari, D., Panou-Filotheou, E., & Karagiannidou, C. (2011) Effect of three Greek arbuscular mycorrhizal fungi in improving the growth, nutrient concentration, and production of essential oils of oregano and mint plants. Scientia Horticulturae, 129, 329-334.
Karagiannidis, N., Thomidis, T., & Panou-Filotheou, E. (2012) Effects of Glomus lamellosum on growth, essential oil production and nutrients uptake in selected medicinal plants. The Journal Agricultural Science, 4, 137-144.
Karimi, K., Ahari, A. B., Weisany, W., Pertot, I., Vrhovsek, U., & Arzanlou, M. (2016) Funneliformis mosseae root colonization affects Anethum graveolens essential oil composition and its efficacy against Colletotrichum nymphaeae. Industrial Crops and Products, 90, 126-134.
Khalid, M., Hassani, D., Bilal, M., Liao, J., & Huang, D. (2017) Elevation of secondary metabolites synthesis in Brassica campestris ssp. chinensis L. via exogenous inoculation of Piriformospora indica with appropriate fertilizer. PLoS ONE, 12, e0177185.
Khaosaad, T., Vierheilig, H., Nell, M., Zitterl-Eglseer, K., & Novak, J. (2006) Arbuscular mycorrhiza alter the concentration of essential oils in oregano (Origanum sp., Lamiaceae). Mycorrhiza, 16, 443- 446.
Khaosaad, T., Krenn, L., Medjakovic, S., Ranner, A., Lössl, A., Nell, M., Jungbauer, A., & Vierheilig, H. (2008) Effect of mycorrhization on the isoflavone contente and the phytoestrogen activity of red clover. Journal of Plant Physiology, 165, 1161- 1167.
Kobayashi, Y. T., Almeida, V. T., Bandeira, T., Alcântara, B. N., Silva, A. S. B., Barbosa, W. L. R., Silva, P. B., Monteiro, M. V., & Almeida, M. B. (2015) Phytochemical evaluation and wound healing potential of the fruit extract ethanolic of jucá (Libidibia ferrea) in Wistar rats. Brazilian Journal of Veterinary Research and Animal Science, 52, 34-40
Kohler, J., Rodán, A., Campoy, M., & Caravaca, F. (2016) Unraveling the role of hyphal networks from arbuscular mycorrhizal fungi in aggregate stabilization of semiarid soils with different textures and carbonate contents. Plant and Soil, 410, 273-281.
Krishna, H., Singh, S. K., Sharma, R. R., Khawale, R. N., Grover, M., & Patel, V. B. (2005) Biochemical changes in micropropagated grape (Vitis vinifera L.) plantlets due to arbuscular mycorrhizal fungi (AMF) inoculation during ex vitro acclimatization. Scientia Horticulturae, 106, 554-567.
Lamian, A., Badi, H. N., Mehrafarin, A., & Sahandi, M. S. (2017) Changes in essential oil and morphophysiological traits of tarragon (Artemisia dracuncalus L.) in responses to arbuscular mycorrhizal fungus, AMF (Glomus intraradices N.C. Schenck & G.S. Sm.) inoculation under salinity. Acta Agriculturae Slovenica, 109, 215-227.
Larose, G., Chênevert, R., Moutoglis, P., Gagné, S., Piché, Y., & Vierheilig, H. (2002) Flavonoid levels in roots of Medicago sativa are modulated by the developmental stage of the symbiosis and the root colonizing arbuscular mycorrhizal fungus. Journal of Plant Physiology, 159, 1329-1339.
Lattanzio, V., Cardinali, A., Ruta, C., Morone Fortunato, I., Lattanzio, V. M. T., Linsalata, V., & Cicco, N. (2009) Relationship of secondary metabolism to growth in orégano (Origanum vulgare L.) shoot cultures under nutritional stress. Environmental and Experimental Botany, 65, 54-62.
Lazzara, S., Militello, M., Carrubba, A., Napoli, E., & Saia, S. (2017) Arbuscular mycorrhizal fungi altered the hypericin, pseudohypericin, and hyperforin content in flowers of Hypericum perforatum grown under contrasting P availability in a highly organic substrate. Mycorrhiza, 27, 345-354.
Lee, J., & Scagel, C. F. (2009) Chicoric acid found in basil (Ocimum basilicum L.) leaves. Food Chemistry, 115, 650-656.
Lermen, C., Morelli, F., Gazim, Z. C., Silva, A. P., Gonçalves, J. E., Dragunski, D. C. et al., 2015. Essential oil content and chemical composition of Cymbopogon citratus inoculated with arbuscular mycorrhizal fungi under differentlevels of lead. Industrial Crops and Products, 76, 734-738.
Lima, K. B., Riter Netto, A. F., Martins, M. A., & Freitas, M. S. M. (2015a) Crescimento, acúmulo de nutrientes e fenóis totais de mudas de cedro australiano (Toona ciliata) inoculadas com fungos micorrízicos. Ciência Florestal, 25, 853-862.
Lima, C. S., Campos, M. A. S., & Silva, F. S. B. (2015b) Mycorrhizal Fungi (AMF) increase the content of biomolecules in leaves of Inga vera Willd. Seedlings. Symbiosis, 65, 117-123.
Lima, C. S., Santos, H. R. S., Albuquerque, U. P., & Silva, F. S. B. (2017) Mycorrhizal symbiosis increase the level of total foliar phenols and tannins in Commiphora leptophloeos (Mart.) J.B. Gillett seedlings. Industrial Crops and Products, 104, 28-32.
Lingua, G., Bona, E., Manassero, P., Marsano, F., Todeschini, V., Cantamessa, S., Copetta, A., D’Agostino, G., Gamalero, E., & Berta, G. 2013. Arbuscular mycorrhizal fungi and plant growth-promoting pseudomonads increases anthocyanin concentration in strawberry fruits (Fragaria x ananassa var. Selva) in conditions of reduced fertilization. International Journal of Molecular Sciencies, 14, 16207-16225.
Lohse, S., Schliemann, W., Ammer, C., Kopka, J., Strack, D., & Thomas Fester, T. (2005) Organization and Metabolism of Plastids and Mitochondria in Arbuscular Mycorrhizal Roots of Medicago truncatula. Plant Physiology, 139, 329-340.
Lone, R., Shua, R., Wani, K. A., Ganaie, M. A., Tiwari, A. K., & Koul, K. K. (2015) Mycorrhizal influence on metabolites, indigestible oligosaccharides, mineral nutrition and phytochemical constituents in onion (Allium cepa L.) plant. Scientia Horticulturae, 193, 55-61.
López-Ráez, J., Fernández, I., García, J. M., Berrio, E., Bonfante, P., Walterd, M. H., & Pozo, M. J. (2015) Differential spatio-temporal expression of carotenoid cleavage dioxygenases regulates apocarotenoid fluxes during AM symbiosis. Plant Science, 230, 59-69.
Lucini, L., Colla, G., Moreno, M. B. M., Bernardo, L., Cardarelli M, Terzi, V., Bonini, P., & Rouphael, Y. (2019) Inoculation of Rhizoglomus irregulares or Trichoderma atroviride differentially modulates metabolite profiling of wheat root exudates. Phytochemistry, 157, 158-167.
Lu, F., Lee, C., & Wang, C. (2015) The influence of arbuscular mycorrhizal fungi inoculation on yam (Dioscorea spp.) tuber weights and secondary metabolite content. Peer- Reviewed & Open Acess, 24, e1266.
M’ barki, N., Chehab, H., Aissaoui, F., Dabbaghi, O., Attia, F., Mahjoub, Z., Laamari, S., Chihaoui, B., Giudice, T., Jemai, A., Boujnah, D., Mechri, B. (2018) Effects of mycorrhizal fungi inoculation and soil amendment with hydrogel on leaf anatomy, growth and physiology performance of olive plantlets under two contrasting water regimes. Acta Physiologiae Plantarum, 40,
Maia-Silva, C., Silva, C. I., Hrncir, M., Queiroz, R. T., & Imperatriz-Fonseca, V. L. (2012) Guia de plantas visitadas por abelhas na caatinga. Fortaleza: Editora Fundação Brasil Cidadão
Makarov, M. I. (2019) The Role of Mycorrhiza in Transformation of Nitrogen Compounds in Soil and Nitrogen Nutrition of Plants: A Review. Eurasian Journal of Soil Science, 52, 193-205.
Malik, A. A., Ahmada, J., Mir, S. R., Ali, M., & Abdin, M. Z. (2009) Influence of chemical and biological treatments on volatile oil composition of Artemisia annua Linn. Industrial Crops and Products, 30, 380-383.
Mandal, S., Evelin, H., Giri, B., Singh, V. P., & Kapoor, R. (2013) Arbuscular mycorrhiza enhances the production of stevioside and rebaudioside-A in Stevia rebaudiana via nutritional and non-nutritional mechanisms. Applied Soil and Ecollogy, 72, 187-194.
Mandal, S., Upadhyay, S., Wajid, S., Ram, M., Jain, D. C., Singh, V. P., Abdin, M. Z., & Kapoor, R. (2015a) Arbuscular mycorrhiza increase artemisinin accumulation in Artemisia annua by higher expression of key biosynthesis genes via enhanced jasmonic acid levels. Mycorrhiza, 25, 345-357.
Mandal, S., Evelin, H., Giri, B., Singh, V. P., & Kapoor, R. (2015b) Enhanced production of steviol glycosides in mycorrhizal plants: A concerted effect of arbuscular mycorrhizal symbiosis on transcription of biosynthetic genes. Plant Physiology and Biochemistry, 89, 100-106.
Mechri, B., Tekaya, M., Cheheb, H., Attia, F., & Hammami, M. (2015) Accumulation of flavonoids and phenolic compounds in olive tree roots in response to mycorrhizal colonization: A possible mechanism for regulation of defense molecules. Journal of Plant Physiology, 185, 40-43.
Meddich, A., Jaiti, F., Bourzik, W., El Asli, A., & Hafidi, M. (2015) Use of mycorrhizal fungi as a strategy for improving the droughttolerance in date palm (Phoenix dactylifera). Scientia Horticulturae, 192, 468-474.
Mollavali, M., Perner, H., Rohn, S., Riehle, P., Hanschen, F.S,, & Schwarz, D. (2018) Nitrogen form and mycorrhizal inoculation amount and timing affect flavonol biosynthesis in onion (Allium cepa L.). Mycorrhiza, 28, 59-70.
Moreira, F. M. S. & Siqueira, J. O. (2006) Microbiologia e Bioquímica do Solo. (2a ed.), UFLA.
Morone-Fortunato, I., & Avato, P. (2008) Plant development and synthesis of essential oils in micropropagated and mycorrhiza inoculated plants of Origanum vulgare L. ssp. hirtum (Link) Ietswaart. Plant Cell, Tissue and Organ Culture, 93, 139-149.
Mota-Fernández, S., Álvarez-Solis, J. D., Abud-Archila, M., Dendooven, L., & Gutiérrez-Miceli, F. A. (2011) Effect of arbuscular mycorrhizal fungi and phosphorus concentration on plant growth and phenols in micropropagated Aloe vera L. plantlets. Journal of Medicnal Plant Research, 5, 6260-6266.
Nell, M., Vötsch, M., Vierheilig, H., Steinkellner, S., Zitterl-Eglseer, K., Franza, C. et al., (2009) Effect of phosphorus uptake on growth and secondary metabolites of garden sage (Salvia officinalis L.). Journal of the Science of Food and Agriculture, 89, 1090-1096.
Nisha, M. C., & Rajeshkumar, S. (2010) Influence of arbuscular mycorrhizal fungi on biochemical changes in Wednilla chinensis (Osteck) Merril. Ancient Science of Life, 29, 26-29.
Nzanza, B., Maraisa, D., & Soundy, P. (2012) Yield and nutrient content of tomato (Solanum lycopersicum L.) as influenced by Trichoderma harzianum and Glomus mosseae inoculation. Scientia Horticulturae, 144, 55-59.
Oksana, S., Marian, B., Mahendra, R., & Bo, S. H. (2012) Plant phenolic compounds for food, pharmaceutical and cosmetiсs production. Journal of Medicinal Plant Research. 6, 2526-2539.
Oliveira, M. S., Campos, M. A. S., Albuquerque, U. P., & Silva, F. S. B. (2013) Arbuscular mycorrhizal fungi (AMF) affects biomolecules content in Myracrodruon urundeuva seedlings. Industrial Crops and Products. 50, 244-247.
Oliveira, M. S., Campos, M. A. S, & Silva, F. S. B. (2015a) Arbuscular mycorrhizal fungi and vermicompost to maximize the production of foliar biomolecules in Passiflora alata Curtis seedlings. Journal of Science of Food and Agriculture, 95, 522-528.
Oliveira, M. S., Pinheiro, I. O., & Silva, F. S. B. (2015b) Vermicompost and arbuscular mycorrhizal fungi: an alternative toincrease foliar orientin and vitexin-2-O-ramnoside synthesis in Passiflora alata Curtis seedlings. Industrial Crops and Products, 77, 754-757.
Oliveira, P. T. F., Alves, G.D., Silva, F. A., & Silva, F. S. B. (2015c) Foliar bioactive compounds in Amburana cearensis (Allemao) A.C. Smith seedlings: Increase of biosynthesis using mycorrhizal technology. Journal of Medicinal Plants Research, 9, 712-718.
Oliveira, P. T. F., Santos, E. L. S., Silva, W. A. V., Ferreira, M. R. A., Soares, L. A. L., Silva, F. A., Silva, F. S. B. (2019a) Production of biomolecules of interest to the anxiolytic herbal medicine industry in yellow passionfruit leaves (Passiflora edulis f. flavicarpa) promoted by mycorrhizal inoculation. Journal of the Science of Food and Agriculture, 99, 3716-3720.
Oliveira, J. S. F., Xavier, L. P., Lins, A., Andrade, E. H. A., Maia, J. G. S., Mello, A. H., Setzer, W. N., Ramos, A. R., & Silva, J. K. R. (2019b) Effects of inoculation by arbuscular mycorrhizal fungi on the composition of the essential oil, plant growth, and lipoxygenase activity of Piper aduncum L. AMB Express, 9, 29.
Oliveira, P. T. F., Santos, E. L., Silva, W. A. V., Ferreira, M. R. A., Soares, L. A. L., Silva, F. A., & Silva, F. S. B. (2020) Use of mycorrhizal fungi releases the application of organic fertilizers to increase the production of leaf vitexin in yellow passion fruit. Journal of the Science of Food and Agriculture, 100, 1816-1821.
Orujei, Y., Shabani, L., & Sharifi-Tehrani, M. (2013) Induction of Glycyrrhizin and total phenolic compound production in licorice by using arbuscular mycorrhizal fungi. Russian Journal of Plant Physiology, 60, 855-860.
Ostadi, A., Javanmard, A., Machiani, M. A., Morshedloo, M. R., Nouraein, M., Rasouli, F. et al., (2020) Effect of different fertilizer sources and harvesting time on the growth characteristics, nutrient uptakes, essential oil productivity and composition of Mentha x piperita L. Industrial Crops and Products, 148, 112290.
Ozgonen, H., & Erkilic, A. (2007) Growth enhancement and Phytophthora blight (Phytophthora capsici L.) control by arbuscular mycorrhizal fungal inoculation in pepper. Crop Protection, 26, 1682-1688.
Pankoke, H., Höpfner, I., Matuszak, A., Beyschlag, W., & Müller, C. (2015) The effects of mineral nitrogen limitation, competition, arbuscular mycorrhiza, and their respective interactions, on morphological and chemical plant traits of Plantago lanceolata. Phytochemistry, 118, 149-161.
Papastylianou, P., Stavropoulos, G., Samanidis, I., & Bilalis, D. (2017) Effect of organic fertilization and AMF inoculation on yield and floral quality parameters of common Marigold. Bullein UASVM. Bulletin of University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca. Horticulture, 74, 1843-5394.
Parada, J., Valenzuela, T., Gómez, F., Tereucán, G., García, S., Cornejo, P., Winterhalter P., & Ruiza, A. (2019) Effect of fertilization and arbuscular mycorrhizal fungal inoculation on antioxidante profiles and activities in Fragaria ananassa fruit. Journal of the Science of Food and Agriculture, 99, 1397-1404.
Pasbani, B., Salimi, A., Aliasgharzad, N., & Hajiboland, R. (2020) Colonization with arbuscular mycorrhizal fungi mitigates cold stress through improvement of antioxidant defense and accumulation of protecting molecules in eggplants. Scientia Horticulturae, 272, 109575.
Paskovic, I., Custic, M. H., Pecina, M., Bronic, J., Ban, D., Radic, T., Pošcic, F., Špika, M. J., Soldo, B., Palcic, I. & Bana, S. G. (2019) Manganese soil and foliar fertilization of olive plantlets: the effect on leaf mineral and phenolic content and root mycorrhizal colonization. Journal of the Science of Food and Agriculture, 99, 360-367.
Pedone-Bonfim, M. V. L., Lins, M. A., Coelho, I. R., Santana, A. S., Silva, F. S. B., & Maia, L. C. (2013) Mycorrhizal technology and phosphorus in the production of primary and secondary metabolites in cebil (Anadenanthera colubrina (Vell.) Brenan) seedlings. Journal of the Science of Food and Agriculture, 93, 1479-1484.
Pedone-Bonfim, M. V. L., Silva, F. S. B., & Maia, L. C. (2015) Production of secondary metabolites by mycorrhizal plants with medicinal or nutritional potential. Acta Physiologiae Plantarum, 37.
Pedone-Bonfim, M. V. L., Silva, D. K. A., Silva-Batista, A. R., Oliveira, A. P., Almeida, J. R. G. S., Yano-Melo, A. M. et al., (2018) Mycorrhizal inoculation as an alternative for the sustainable production of Mimosa tenuiflora seedlings with improved growth and secondary compounds contente. Fungal Biology. 122, 918-927.
Pedranzani, H., Rodríguez-Rivera, M., Gutiérrez, M., Porcel, R., Hause, B., & Ruiz-Lozano, J,M, (2016) Arbuscular mycorrhizal symbiosis regulates physiology and performance of Digitaria eriantha plants subjected to abiotic stresses by modulating antioxidant and jasmonate levels. Mycorrhiza, 26, 141-152.
Peipp, H., Maier, W., Schmidt, J., Wray, V., & Strack, D. (1997) Arbuscular mycorrhizal fungus-induced changes in the accumulation of secondary compounds in barley roots. Phytochemistry, 44, 581-587.
Perner, H., Rohn, S., Driemel, G., Batt, N., Schwarz, D., Kroh, L. W., & George, E. (2008) Effect of nitrogen species supply and mycorrhizal colonization on organosulfur and phenolic compounds in onions. Journal of Agricultural and Food Chemistry, 56, 3538-3545.
Pirzad, A., & Mohammadzadeh, S. (2018) Water use efficiency of three mycorrhizal Lamiaceae species (Lavandula officinalis, Rosmarinus officinalis and Thymus vulgaris). Agricultural Water Management, 204, 1-10.
Pistelli, L., Ulivieri, V., Giovanelli, S., Avio, L., Giovannetti, M., & Pistelli, L. (2017) Arbuscular mycorrhizal fungi alter the content and composition of secondary metabolites in Bituminaria bituminosa L. Plant Biology, 19, 926-933.
Ponce, M. A., Bompadre, M. J., Scervino, J. M., Juan, A., Ocampo, J. A., Chaneton, E. J., Alicia, M., & Godeas, A. M. (2009). Flavonoids, benzoic acids and cinnamic acids isolated from shoots and roots of Italian rye grass (Lolium multiflorum Lam.) with and without endophyte association and arbuscular mycorrhizal fungus. Biochemical Systematics and Ecology, 37, 245-253.
Rahimzadeh, S., & Pirzad, A., (2017). Arbuscular mycorrhizal fungi and Pseudomonas in reduce drought stress damage in flax (Linum usitatissimum L.): a field study. Mycorrhiza, 27, 537- 552.
Rajeshkumar, S., Nisha, M. C., & Selvaraj, T. (2008) Variability in growth, nutrition and phytochemical constituents of Plectranthus amboinicus (Lour) Spreng. as influenced by indigenous arbuscular mycorrhizal fungi. Maejo international journal of science and technology, 2, 431-439.
Rasouli-Sadaghiani, M., Hassani, A., Barin, M., Danesh, Y. R., & Sefidkonet, F. (2010) Effects of arbuscular mycorrhizal (AM) fungi on growth, essential oil production and nutrients uptake in basil. Journal of medicinal plant research, 4, 2222-2228.
Rashad, Y., Aseel, D., Hammad, S., & Elkelish, A. (2020) Rhizophagus irregularis and Rhizoctonia solani differentially elicit systemic transcriptional expression of polyphenol biosynthetic pathways genes in sunflower. Biomolecules, 10, 379.
Ratti, N., Verma, H. N., & Gautam, S. P. (2010). Effect of Glomus species on physiology and biochemistry of Catharanthus roseus. Indian Journal of Microbiology, 50, 355-360.
Remy, W., Taylor, T. N., Hass, H., & Kerp, H. (1994) Four hundred-million-year-old vesicular arbuscular mycorrhizae. Proceedings of the National Academy of Sciences of the United States of America, 91, 11841-11843.
Riter Netto, A. F., Freitas, M. S. M., Martins, M. A., Carvalho, A. J. C., & Vitorazi Filho, J. Á. (2014) Efeito de fungos micorrízicos arbusculares na bioprodução de fenóis totais e no crescimento de Passiflora alata Curtis. Revista Brasileira de Plantas Medicinais, 16, 1-9.
Rodriguéz-Caballero, G., Caravaca, F., Fernández-González, A. J., Alguacil, M. M., Fernández-López, M., & Roldán, A. (2017) Arbuscular mycorrhizal fungi inoculation mediated changes in rhizosphere bacterial community structure while promoting revegetation in a semiarid ecosystem. The Science of the total environment, 584-585: 838-848.
Rojas-Andrade, R., Cerda-García-Rojas, Frías-Hernández, J. T., Dendooven, L., Olalde-Portugal, V., & Ramos-Valdivia, A. C. (2003) Changes in the concentration of trigonelline in a semi-arid leguminous plant (Prosopis laevigata) induced by an arbuscular mycorrhizal fungus during the presymbiotic phase. Mycorrhiza, 13, 49-523.
Rosa-Mera, C. J. D., Ferrera-Cerrato, R., Alarcón, A., Sánchez-Colín, M. J., & Muñoz-Muñiz, O. D. (2011) Arbuscular mycorrhizal fungi and potassium bicarbonate enhance the foliar content of the vinblastine alkaloid in Catharanthus roseus. Plant and Soil, 349, 367-376.
Rozpadeck, P., Wezowicz, K., Stojakowska, A., Malarz, J., Surowka, E., Sobczyk, Ł., Anielska, T., Wazny, R., Miszalski, Z., & Turnau, K. (2014) Mycorrhizal fungi modulate phytochemical production and antioxidante activity of Cichorium intybus L. (Asteraceae) under metal toxicity. Chemosphere, 112, 217-224.
Ruiz-Terán, F., Medrano-Martínez, A., & Navarro-Ocaña, A. (2008) Antioxidant and free radical scavenging activities of plant extracts used in traditional medicine in Mexico. African Journal of Biotechnology, 7, 1886-1893.
Rydlová, J., Jelínková, M., Dušek, K., Dušková, E., Vosátka, M., & Püschel, D. (2016) Arbuscular mycorrhiza differentially affects synthesis of essential oils in coriander and dill. Mycorrhiza, 26, 123-131.
Salloum, M. S., Menduni, M. F., Benavides, M. P., Larrauri, M., Luna, C. M., & Silvente, S. (2018) Polyamines and flavonoids: key compounds in mycorrhizal colonization of improved and unimproved soybean genotypes. Symbiosis, 76, 265-275.
Sanmartín, C., Garmendia, I., Romano, B., Díaz, M., Palop, J, A., & Nieves Goicoechea. (2014) Mycorrhizal inoculation affected growth, mineral composition, proteins and sugars in lettuces biofortified with organic or inorganic seleno compounds. Scientia Horticulturae, 180, 40-51.
Santos, E. L., Silva, F. A., & Silva, F. S. B. (2017) Arbuscular Mycorrhizal Fungi increase the phenolic compounds concentration in the bark of the stem of Libidibia Ferrea in field conditions. The Open Microbiology Journal, 11, 283-291.
Santos, E. L., Silva, W. A. V., Ferreira, M. R. A., Soares, L. A., Sampaio, E. V. S. B., Silva, F. A., & Silva, F. S. B. (2020) Acaulospora longula increases the content of phenolic compounds and antioxidant activity in fruits of Libidibia ferrea. The Open Microbiology Journal 14, 132-139.
Santos, E. L., Muniz, B. C., Barbosa, B. G. V., Morais, M. M. C., Silva, F. A., & Silva, F. S. B. (2021) Is AMF inoculation an alternative to maximize the in vitro antibacterial activity of Libidibia ferrea extracts? Research, Society and Development, 1, e10010111435.
Scervino, J. M., Ponce, M. A., Erra-Bassells, R., Bompadre, M. J., Vierheilig, H., Ocampo, J. A., & Godeas, A. (2006) Glycosidation of apigenin results in a loss of its activity on different growth parameters of arbuscular mycorrhizal fungi from the genus Glomus and Gigaspora. Soil Biology and Biochemistry, 38, 2919-2922.
Schliemann, W., Ammer, C., & Strack, D. (2008) Metabolite profiling of mycorrhizal roots of Medicago truncatula. Phytochemistry, 69, 112-146.
Seifi, E., Teymoor, Y. S., Alizadeh, M., & Fereydooni, H. (2014) Olive mycorrhization: Influences of genotype, mycorrhiza, and growing periods. Scientia Horticulturae, 180, 214-219.
Selvaraj, T., Nisha, M. C., & Rajeshkumar, S. (2009) Effect of indigenous arbuscular mycorrhizal fungi on some growth parameters and phytochemical constituents of Pogostemon patchouli Pellet. Maejo international journal of science and technology, 3, 222-234.
Selvaraj, T., & Sumithra, P. (2011) Effect of Glomus aggregatum and plant growth promoting rhizomicroorganisms on growth, nutrition and contente of secondary metabolites in Glycyrrhiza glabra L. Indian Journal of Applied & Pure Biology, 26, 283-290.
Seró, R., Núñez, N., Núñez, O., Camprubí, A., Grases, J. M., Saurina, J. et al., (2019) Modified distribution in the polyphenolic profile of rosemary leaves induced by plant inoculation with an arbuscular mycorrhizal fungus. Journal of the Science of Food and Agriculture, 99, 2966-2973.
Sharma, E., Anand, G., & Kapoor, R. (2017) Terpenoids in plant and arbuscular mycorrhiza-reinforced defence against herbivorous insects. Annals of Botany, 119, 791-801.
Shtark, O. Y., Puzanskiy, R. K., Avdeeva, G. S., Yurkov, A. P., Smolikova, G. N., & Yemelyanov, V. V. (2019) Metabolic alterations in pea leaves during arbuscular mycorrhiza development. Peer-Reviewed & Open Acess, 7, e7495.
Shrivastava, G., Ownley, B. H., Augé, R. M., Toler, H., Dee, M., Vu, A., Köllner, T. G., & Chen, F. (2015) Colonization by arbuscular mycorrhizal and endophytic fungi enhanced terpene production in tomato plants and their defense against a herbivorous insect. Symbiosis, 65, 65-74.
Silva, M. F., Pescador, R., Rebelo, R. A., & Stürmer, S. L. (2008) The effect of arbuscular mycorrhizal fungal isolates on the development and oleoresin production of micropropagated Zingiber officinale. Brazilian Journal of Plant Physiology, 20, 119-130.
Silva, L. C. N., Miranda, R. C. M. , Gomes, E. B., Macedo, A. J., Araújo, J. M., Figueiredo, R. C. B. Q., Silva, M. V., & Correia, M. T. S. (2013) Evaluation of combinatory effects of Anadenanthera colubrina, Libidibia ferrea and Pityrocarpa moniliformis fruits extracts and erythromycin against Staphylococcus aureus. Journal of Medicinal Plant Research, 7, 2358-2364.
Silva, F. A., Silva, F. S. B., & Maia, L. C. (2014a) Biotechnical application of arbuscular mycorrhizal fungi used in the production of foliar biomolecules in ironwood seedlings [Libidibia ferrea (Mart. Ex Tul.) L. P. Queiroz var. ferrea]. Journal of Medicinal Plant Research, 8, 814-819.
Silva, F. A., Ferreira, M. R. A., Soares, L. A. L., Sampaio, E. V. S. B., Silva, F. S. B., & Maia, L. C. (2014a) Arbuscular mycorrhizal fungi increase acid gallic production in leaves of field grown Libidibia ferrea (Mart. Ex Tul.) L. P. Queiroz. Journal of Medicinal Plant Research, 8, 1110-1115.
Silva, V. C., Alves, P. A. C., Oliveira, R. A., Jesus, R. M., Costa, L. C. B., & Gross, E. (2014d) Influence of arbuscular mycorrhizal fungi on growth, mineral composition and production of essential oil in Mentha x piperita L. var. citrata (Ehrh) Briq. Under two phosporus levels. Journal of Medicinal Plant Research, 8, 1321-1332.
Silva, L. G., Martins, L. M. V., & Silva, F. S. B. (2014c) Arbuscular mycorrhizal symbiosis in the maximization of the concentration of foliar biomolecules in pomegranate (Punica granatum L.) seedlings. Journal of Medicinal Plant Research, 8, 953- 957.
Silva, F. A., & Silva, F. S. B. (2017) Is the application of arbuscular mycorrhizal fungi an alternative to increase foliar phenolic compounds in seedlings of Mimosa tenuiflora (Wild.) Poir., Mimosoideae? Brazilian Journal of Botany, 40, 361-365.
Silva, F. A., Maia, L. C., & Silva, F. S. B. (2018a) Arbuscular mycorrhizal fungi as biotechnology alternative to increase concentrate of secondary metabolites in Zea mays L. Brazilian Journal of Botany, 42, 189-193.
Silva, F. A., Silva, W. A. V., Ferreira, M. R. A., Soares, L. A. L., & Silva, F. S. B. (2018b) Bark of the stem of Libidibia ferrea associated with mycorrhizal fungi: an alternative to produce high levels of phenolic acids. The Open Microbiology Journal, 12, 412-418.
Silva, F. S. B., & Maia, L. C. (2018) Mycorrhization and phosphorus may be an alternative for increasing the production of metabolites in Myracrodruon urundeuva. Theoretical and Experimental Plant Physiology, 30, 297-302.
Silva, F. S. B., & Silva, F. A. (2020) A low cost alternative, using mycorrhiza and organic fertilizer, to optimize the production of foliar bioactive compounds in pomegranates. Journal of Applied Microbiology, 128, 513-517.
Simões, C. M. O. et al., (2017) Farmacognosia: do produto natural ao medicamento. Artmed, 486p.
Singh, S., Pandey, A., Kumar, B., Man, S. L., & Palni, L. M. S. (2010) Enhancement in growth and quality parameters of tea [Camellia sinensis (L.) O. Kuntze] through inoculation with arbuscular mycorrhizal fungi in an acid soil. Biology and Fertility of Soils, 46, 427-433.
Singh, N. V., Singh, S. K., Singh, A. K., Meshram, D. T., Suroshe, S. S., & Mishra, D. C. (2012) Arbuscular mycorrhizal fungi (AMF) induced hardening of micropropagated pomegranate (Punica granatum L.) plantlets. Scientia Horticulturae, 136, 122-127.
Singh, R., Soni, S. K., & Kalra, A. (2013) Synergy between Glomus fasciculatum and a beneficial Pseudomonas in reducing root diseases and improving yield and forskolin content in Coleus forskohlii Briq. under organic field conditions. Mycorrhiza, 23, 35-44.
Smith, S. E., & Read, D. J. (2008) Mycorrhizal symbiosis. (3a ed.), Elsevier.
Soares, A. C. F., Martins, M. A., Mathias, L., & Freitas, M. S. M. (2005) Arbuscular mycorrhizal fungi and the occurrence of flavonoids in roots of Passion fruit seedlings. Scientia Agricola, 62, 331-336.
Strack, D., & Fester, T. (2006) Isoprenoid metabolism and plastid reorganization in arbuscular mycorrhizal roots. The New phytologist, 172, 22–34.
Tarraf, W., Ruta, C., De Cillis, F., Tagarelli, A., Tedone, L., & De Mastro, G. (2015) Effects of mycorrhiza on growth and essential oil production in selected aromatic plants. Italian Journal of Agronomy, 10, 160-162.
Tavarini, S., Passera, B., Martini, A., Avio, L., Sbrana, C., Giovannetti, & M., Angelini L. G. (2018) Plant growth, steviol glycosides and nutrient uptake as affected by arbuscular mycorrhizal fungi and phosphorous fertilization in Stevia rebaudiana Bert. Industrial Crops and Products, 111, 899-907.
Taylor, T. N., Remy, W., Hass, H., & Kerp, H. (1995) Fossil arbuscular mycorrhizae from the Early Devonian. Mycologia, 87, 560-573.
Tchameni, S. N., Ngonkeu, M. E. L., Begoude, B. A. D., Nana, L. W., Fokom, R., Owona, A. D. et al., (2011) Effect of Trichoderma asperellum and arbuscular mycorrhizal fungi on cacao growth and resistance against black pod disease. Crop Protection, 30, 1321-1327.
Tejavathi, D. H., Anitha, P., Murthy, S.M., & Nijagunaiah, R. (2011) Effect of AM fungal association with normal and micropropagated plants of Andrographis paniculata Nees on biomass, primary and secondary metabolites. International Research Journal of Plant Science, 2, 338-348.
Tekaya, M., Mechri, B., Mbarki, N., Cheheb, H., Hammami, M., & Attia, F. (2017) Arbuscular mycorrhizal fungus Rhizophagus irregularis influences key physiological parameters of olive trees (Olea europaea L.) and mineral nutrient profile. Photosynthetica, 55, 308-316.
Thokchom, S. D., Gupta, S., & Kapoor, R. (2020) Arbuscular mycorrhiza augments essential oil composition and antioxidant properties of Ocimum tenuiflorum L. – A popular green tea additive. Industrial Crops and Products, 153, 112418.
Tian, L., Chang, C., Ma, L., Nasir, F., Zhang, J., & Li, W. (2019) Comparative study of the mycorrhizal root transcriptomes of wild and cultivated rice in response to the pathogen Magnaporthe oryzae. Rice, 12, 35.
Tiwari, S., Pandey, S., Chauhan, P.S., & Pandeya, R. (2017) Biocontrol agents in co-inoculation manages root knot nematode [Meloidogyne incognita (Kofoid & White) Chitwood] and enhances essential oil content in Ocimum basilicum L. Industrial Crops and Products, 97, 292-301.
Todeschini, V., AitLahmidi, N., Mazzucco, E., Marsano, F., Gosetti, F., Robotti, E., Bona, E., Massa, N., Bonneau, L., Marengo, E., Wipf, D., Berta, G., & Lingua, G. (2018) Impact of beneficial microorganisms on strawberry growth, fruit production, nutritional quality, and volatilome. Frontriers in Plant Science, 9, 1611.
Tognon, G. B., Sanmartín, C., Alcolea, V., Cuquel, F. L., & Goicoechea, N. (2015) Mycorrhizal inoculation and/or selenium application affect post-harvest performance of snapdragon flowers. Plant Growth Regulation, 78, 389-400.
Tomczak, V. V., Schweiger, R., & Müller, C. (2016) Effects of Arbuscular Mycorrhiza on Plant Chemistry and the Development and Behavior of a Generalist Herbivore. Journal of Chemical Ecology, 42, 247-1258.
Torres, N., Goicoechea, N., & Antolín, M. C. (2015) Antioxidant properties of leaves from different accessions of grapevine (Vitis vinifera L.) cv. Tempranillo after applying bioticand/or environmental modulator factors. Industrial Crops and Products, 76, 77-85.
Torres, N., Antolín, M. C., Garmendia, I., & Goicoechea, N. (2018) Nutritional properties of Tempranillo grapevine leaves are affected by clonal diversity, mycorrhizal symbiosis and air temperature regime. Plant Physiology and Biochemistry, 130, 542-554.
Torun, H., & Toprak, B. (2020) Arbuscular mycorrhizal fungi and k-humate combined as biostimulants: changes in antioxidant defense systemand radical scavenging capacity in Elaeagnus angustifolia. Journal of Soil Science and Plant Nutrition, 20, 2379-2393.
Toussaint, J. P., Smith, F. A., & Smith, S. E. (2007) Arbuscular mycorrhizal fungi can induce the production of phytochemicals in sweet basil irrespective of phosphorus nutrition. Mycohrriza, 17, 291-297.
Tyagi, J., Varma, A., & Pudake, R. N. (2017) Evaluation of comparative effects of arbuscular mycorrhiza (Rhizophagus intraradices) and endophyte (Piriformospora indica) association with finger millet (Eleusine coracana) under drought stress. European Journal of Soil Biology, 81, 1-10.
Urchoviche, R. C., Gazim, Z. C., Dragunski, D. C., Barcellos, F. G., & Alberton, O. (2015) Plant growth and essential oil content of Mentha crispa inoculated with arbuscular mycorrhizal fungi under different levels of phosphorus. Industrial Crops and Products, 67, 103-107.
Vierheilig, H., Gagnon, H., Strack, D., & Maier, W. (2000) Accumulation of cyclohexenone derivatives in barley, wheat and maize roots in response to inoculation with different arbuscular mycorrhizal fungi. Mycorrhiza, 9, 291-293.
Walter, M. H., Fester, T., & Strack, D. (2000) Arbuscular mycorrhizal fungi under the non-mevalonate methylerythritol phosphate pathway of isoprenoid biosynthesis correlated with accumulation of the ‘yellow pigment’ and other apocarotenoids. The Plant Journal, 21, 571-578.
Wang, D., Shi, Q., Wang, X., Wei, M., Hu, J., Liu, J., & Yang, F. (2010) Influence of cow manure vermicompost on the growth, metabolite contents, and antioxidant activities of Chinese cabbage (Brassica campestris ssp. chinensis). Biology and Fertility of Soils, 46, 689-696.
Wazny, R., Rozpadek, P., Jêdrzejczyk, R. J., Sliwa, M., Stojakowska, A., Anielska, T. et al., (2018) Does co-inoculation of Lactuca serriola with endophytic and arbuscular mycorrhizal fungi improve plant growth in a polluted environment? Mycorrhiza, 28, 235-246.
Weisany, W. (2018) Glomus intraradices (N.C. Schenck & G.S. Sm.) C. Walker & A. Schuessle enhances nutrients uptake, chlorophyll and essential oil contents and composition in Anethum graveolens L. Acta agriculturae Slovenica, 111, 303-313.
Wicaksono, W. A., Sansom, C. E., Jones, E. E., Perry, N. B., Monk, J., & Ridgway, H. J. (2018) Arbuscular mycorrhizal fungi associated with Leptospermum scoparium (mānuka): effects on plant growth and essential oil contente. Symbiosis, 75, 39- 50.
Wijayawardene, N. N., Hyde, K. D., Al-Ani, L. K. T., Tedersoo, L., Haelewaters, D., Rajeshkumar, K. C. et al, (2020) Outline of Fungi and fungus-like taxa. Mycosphere, 11, 1060-1456.
Wu, Q., Liu, C., Zhang, D., Zou, Y., He, X., & Wu, Q. (2015) Mycorrhiza alters the profile of root hairs in trifoliate Orange. Mycorrhiza, 26, 237-247.
Wu, S., Zhang, X., Chen, B., Wu, Z., Li, T., Hu, Y., Sun, Y, & Wang, Y. (2016) Chromium immobilization by extraradical mycelium of arbuscular mycorrhiza contributes to plant chromium tolerance. Environmental and Experimental Botany, 122, 10-18.
Xie, W., Hao, Z., Zhou, X., Jiang, X., Xu, L., Wu, S. et al., Zhao, A., Zhang, X., & Chen, B. (2018) Arbuscular mycorrhiza facilitates the accumulation of glycyrrhizin and liquiritin in Glycyrrhiza uralensis under drought stress. Mycorrhiza, 28, 285-300.
Yadav, K., Aggarwal, A., & Singh, N. (2013) Arbuscular mycorrhizal fungi (AMF) induced acclimatization, growth enhancement and colchicine content of micropropagated Gloriosa superba L. plantlets. Industrial Crops and Products, 45, 88-93.
Yang, Y., Ou, X., Yang, G., Xia, Y., Chen, M., Guo, L., & Liu D. (2017) Arbuscular Mycorrhizal Fungi Regulate the Growth and Phyto-Active Compound of Salvia miltiorrhiza Seedlings. Applied Sciences, 7, 68.
Yu, M., Xie, W., Zhang, X., Zhang, S., Wang, Y., & Hao, Z. (2020) Arbuscular Mycorrhizal Fungi Can Compensate for the Loss of Indigenous Microbial Communities to Support the Growth of Liquorice (Glycyrrhiza uralensis Fisch.). Plants, 9, 7.
Zayova, E., Stancheva, I., Geneva, M., Hristozkova, M., Dimitrova, L., Petrova, M. et al., (2017) Arbuscular mycorrhizal fungi enhance antioxidant capacity of in vitro propagated garden thyme (Thymus vulgaris L.). Symbiosis, 74, 177-187.
Zeng, Y., Guo, L., Chen, B., Hao, Z., Wang, J., & Huang, L. (2013) Arbuscular mycorrhizal symbiosis and active ingredients of medicinal plants: current research status and prospectives. Mycorrhiza, 253- 265.
Zhang, R., Zhu, H., Zhao, H., & Yao, Q. (2013) Arbuscular mycorrhizal fungal inoculation increases phenolic synthesis in clover roots via hydrogen peroxide, salicylic acid and nitric oxide signaling pathways. Journal of plant physiology, 170, 74-79.
Zhao, Q., Li, R., Zhang, Y., Huang, K., Wang, W., Li, J. (2018) Transcriptome analysis reveals in vitro‑cultured regeneration bulbs as a promising source for targeted Fritillaria cirrhosa steroidal alkaloid biosynthesis. 3 Biotech, 8, 191.
Zhi-lin, Y., Chuan-chao, D., & Lian-qing, C, (2007). Regulation and accumulation of secondary metabolites in plant-fungus symbiotic system. African Journal of Biotechnology, 6, 1266-1271.
Zhu, H., Zhang, R., Chen, W., Gu , Z., Xie ,X., Zhao, H., & Yao, Q. (2015) The possible involvement of salicylic acid and hydrogen peroxide in the systemic promotion of phenolic biosynthesis in clover roots colonized by arbuscular mycorrhizal fungus. Journal of Plant Physiology, 178, 27-34.
Zimare, S. B., Borde, M. Y., Jite, P. K., & Malpathak, N. P. (2013) Effect of AM Fungi (Gf, Gm) on Biomass and Gymnemic Acid Content of Gymnema sylvestre (Retz.) R. Br. ex Sm. Proceedings of the National Academy of Sciences, India - Section B: Biological Sciences, 83, 439-445.
Zitterl-Eglseer, K., Nell, M., Lamien-Meda, A., Steinkellner, S., Wawrosch, C., Kopp, B., Zitterl, W., Vierheilig, H., & Novak, J. (2015) Effects of root colonization by symbiotic arbuscular mycorrhizal fungi on the yield of pharmacologically active compounds in Angelica archangelica L. Acta Physiologiae Plantarum, 37, 21.
Zubeck, S., Stojakowska, A., Anielska, T., & Turnau, K. (2010) Arbuscular mycorrhizal fungi alter thymol derivative contents of Inula ensifolia L.Mycorrhiza, 20, 497-504.
Zubeck, S., Mielcarek, S., & Turnau, K. (2012) Hypericin and pseudohypericin concentrations of a valuable medicinal plant Hypericum perforatum L. are enhanced by arbuscular mycorrhizal fungi. Mycorrhiza, 22, 149-156.
Zubeck, S., Rola, K., Szewczyk, A., Majewska, M. L., & Turnau, K. (2015) Enhanced concentrations of elements and secondary metabolites in Viola tricolor L. induced by arbuscular mycorrhizal fungi. Plant Soil, 390, 129-142.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Emanuela Lima dos Santos; Eduarda Lins Falcão; Fábio Sérgio Barbosa da Silva
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.