Canine vegan biscuits produced with inulin and blackberry flour
DOI:
https://doi.org/10.33448/rsd-v10i2.12987Keywords:
Pet food; Veganism; Canine snack; Dogs; Oligosaccharide.Abstract
Pet food accounts for more than 60% of the total sales in the pet market, with emphasis on products with the addition of functional ingredients and health claims. The objective of the present study was to manufacture vegan canine biscuits, as snacks, containing the following functional ingredients: inulin, blackberry flour (BBF), and hydrolyzed soy protein (HSP). Four formulations were made, as follows: CB1, a control formulation, without the addition of inulin, BBF, and HSP. For the other formulations, the amount of BBF and HSP was set at 50 and 35 g/kg, respectively, and the inulin contents were 30, 60, and 90 g/kg, for the formulations CB2, CB3, and CB4, respectively. All biscuits were evaluated for their technological properties. The increase in inulin significantly reduced the hardness of the biscuits from 30 N (CB1) to 20 N (CB3 and CB4). The biscuits with blackberry exhibited a pink color, which shows that this natural ingredient can be used as a food coloring ingredient, thus avoiding the use of synthetic additives. CB3 and CB4 had the same acceptance as CB1, indicating no sensory rejection of the ingredients by the dogs. The BBF increased (p-value<0.05) the total phenolics content and the antioxidant capacity, and inulin increased (p-value<0.05) the prebiotic activity in relation to the control. The study demonstrated that color-conferring ingredients with bioactive compounds can be used in canine biscuits formulations, with no changes in the sensory acceptance, which can be an effective alternative to include the functional ingredients while maintaining the health appeal and clean label of the products.
References
AACCI. (2010). Approved Methods of Analysis. AACC International.
ABINPET, B. I. A. of P. P. (2016). Market data of 2016 (p. 5). https://abinpet.org.br/site/mercado/
AOAC, association of official agricultural chemists. (2006). Official methods of analysis of the Association of Official Analytical Chemists (W. Howitz & G. W. Latimer Jr (18th ed.). AOAC International.
Axelsson, E., Ratnakumar, A., Arendt, M.-L., Maqbool, K., Webster, M. T., Perloski, M., Liberg, O., Arnemo, J. M., Hedhammar, Å., & Lindblad-Toh, K. (2013). The genomic signature of dog domestication reveals adaptation to a starch-rich diet. Nature, 495(7441), 360–364. https://doi.org/10.1038/nature11837
Biagi, G., Cipollini, I., Grandi, M., & Zaghini, G. (2010). Influence of some potential prebiotics and fibre-rich foodstuffs on composition and activity of canine intestinal microbiota. Animal Feed Science and Technology, 159(1–2), 50–58. https://doi.org/10.1016/j.anifeedsci.2010.04.012
Brazil. (2008). Regulates and establishes procedures for the scientific use of animals (p. 20).
Byosiere, S.-E., Chouinard, P. A., Howell, T. J., & Bennett, P. C. (2018). What do dogs (Canis familiaris) see? A review of vision in dogs and implications for cognition research. Psychonomic Bulletin & Review, 25(5), 1798–1813. https://doi.org/10.3758/s13423-017-1404-7
Cauvain, S. (2015). Technology of Breadmaking. Springer International Publishing. https://doi.org/10.1007/978-3-319-14687-4
Chen, M., Chen, X., Cheng, W., Li, Y., Ma, J., & Zhong, F. (2016). Quantitative optimization and assessments of supplemented tea polyphenols in dry dog food considering palatability, levels of serum oxidative stress biomarkers and fecal pathogenic bacteria. RSC Advances, 6(20), 16802–16807. https://doi.org/10.1039/C5RA22790A
Chevallier, S., Colonna, P., Buléon, A., & Della-Valle, G. (2000). Physicochemical behaviors of sugars, lipids, and gluten in short dough and biscuit. Journal of Agricultural and Food Chemistry, 48(4), 1322–1326. https://doi.org/10.1021/jf990435+
Clerici, M. T. P. S., & Carvalho-Silva, L. B. (2011). Nutritional bioactive compounds and technological aspects of minor fruits grown in Brazil. Food Research International, 44(7), 1658–1670. https://doi.org/10.1016/j.foodres.2011.04.020
Di Cerbo, A., Morales-Medina, J. C., Palmieri, B., Pezzuto, F., Cocco, R., Flores, G., & Iannitti, T. (2017). Functional foods in pet nutrition: Focus on dogs and cats. Research in Veterinary Science, 112, 161–166. https://doi.org/10.1016/j.rvsc.2017.03.020
Dunlap, K. L., Reynolds, A. J., & Duffy, L. K. (2006). Total antioxidant power in sled dogs supplemented with blueberries and the comparison of blood parameters associated with exercise. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 143(4), 429–434. https://doi.org/10.1016/j.cbpa.2005.09.007
FEDIAF, F. européenne de l’industrie des aliments pour animaux familiers. (2019). Nutritional Guidelines for Complete and Complementary Pet Food for Cats and Dogs (p. 100).
Hall, J. A., Picton, R. A., Finneran, P. S., Bird, K. E., Skinner, M. M., Jewell, D. E., & Zicker, S. (2006). Dietary antioxidants and behavioral enrichment enhance neutrophil phagocytosis in geriatric Beagles. Veterinary Immunology and Immunopathology, 113(1–2), 224–233. https://doi.org/10.1016/j.vetimm.2006.03.019
Hussein, H. S., Flickinger, E. A., & Fahey, G. C. (1999). Petfood Applications of Inulin and Oligofructose. The Journal of Nutrition, 129(7), 1454S-1456S. https://doi.org/10.1093/jn/129.7.1454S
Knight, A., & Leitsberger, M. (2016). Vegetarian versus Meat-Based Diets for Companion Animals. Animals, 6(9), 57. https://doi.org/10.3390/ani6090057
Kozłowska, I., Marć-Pieńkowska, J., & Bednarczyk, M. (2016). 2. Beneficial Aspects of Inulin Supplementation as a Fructooligosaccharide Prebiotic in Monogastric Animal Nutrition – A Review. Annals of Animal Science, 16(2), 315–331. https://doi.org/10.1515/aoas-2015-0090
Li, D., Kim, J. M., Jin, Z., & Zhou, J. (2008). Prebiotic effectiveness of inulin extracted from edible burdock. Anaerobe, 14(1), 29–34. https://doi.org/10.1016/j.anaerobe.2007.10.002
Manley, D. (2000). Technology of biscuits, crackers and cookies (D. Manley). CRC Press.
Mintel, G. L. (2018). US sales of pet treats outpace dog/cat food over the last five years (p. 5). https://www.mintel.com/press-centre/social-and-lifestyle/us-sales-of-pet-treats-outpace-dogcat-food-over-the-last-five-years
Moro, T. M. A., Celegatti, C. M., Pereira, A. P. A., Lopes, A. S., Barbin, D. F., Pastore, G. M., & Clerici, M. T. P. S. (2018). Use of burdock root flour as a prebiotic ingredient in cookies. LWT - Food Science and Technology, 90, 540–546. https://doi.org/10.1016/j.lwt.2017.12.059
Nabeshima, E. H., Moro, T. M. A., Campelo, P. H., Sant’Ana, A. S., & Clerici, M. T. P. S. (2020). Tubers and roots as a source of prebiotic fibers. Advances in Food and Nutrition Research, 94. https://doi.org/10.1016/bs.afnr.2020.06.005
Oliveira, T. W. N. de, Damasceno, A. N. C., Oliveira, V. A. de, Silva, C. E. de O., Oliveira, V. M. A. de, Silva, R. K. dos S. e, Sousa, A. A. de, Sousa, C. B. de, Negreiros, H. A., Barros, N. V. dos A., Sousa, J. M. de C. e, Silva, F. C. C. da, & Medeiros, S. R. A. (2020). Evaluation of the physical-chemical composition and hypoglycemic properties in biscuits produced with eggplant (Solanum melongena L.) and okra (Abelmoschus esculentus L. Moench). Research, Society and Development, 9(5), e41952712. https://doi.org/10.33448/rsd-v9i5.2712
Olivry, T., & Bizikova, P. (2010). A systematic review of the evidence of reduced allergenicity and clinical benefit of food hydrolysates in dogs with cutaneous adverse food reactions. Veterinary Dermatology, 21(1), 32–41. https://doi.org/10.1111/j.1365-3164.2009.00761.x
Pereira, A. P. A., Clerici, M. T. P. S., Schmiele, M., & Pastore, G. M. (2019). Blackberries (Rubus sp.) and whole grain wheat flour in cookies: evaluation of phenolic compounds and technological properties. Journal of Food Science and Technology, 56(3), 1445–1453. https://doi.org/10.1007/s13197-019-03628-6
Propst, E. L., Flickinger, E. A., Bauer, L. L., Merchen, N. R., & Fahey, G. C. (2003). A dose-response experiment evaluating the effects of oligofructose and inulin on nutrient digestibility, stool quality, and fecal protein catabolites in healthy adult dogs. Journal of Animal Science, 81(12), 3057–3066. https://doi.org/10.2527/2003.81123057x
Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., & Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology and Medicine, 26(9–10), 1231–1237. https://doi.org/10.1016/S0891-5849(98)00315-3
Roberfroid, M. B. (2005). Introducing inulin-type fructans. British Journal of Nutrition, 93(S1), S13–S25. https://doi.org/10.1079/bjn20041350
Roberfroid, M. B. (2007). Inulin-Type Fructans: Functional Food Ingredients. The Journal of Nutrition, 137(11), 2493S-2502S. https://doi.org/10.1093/jn/137.11.2493S
Roesler, R., Catharino, R. R., Malta, L. G., Eberlin, M. N., & Pastore, G. (2007). Antioxidant activity of Annona crassiflora: Characterization of major components by electrospray ionization mass spectrometry. Food Chemistry, 104(3), 1048–1054. https://doi.org/10.1016/j.foodchem.2007.01.017
Rofe, P. C., & Anderson, R. S. (1970). Food preference in domestic pets. Proceedings of the Nutrition Society, 29(2), 330–335. https://doi.org/10.1079/PNS19700064
Sousa, R. S. de, Novais, T. S., Batista, F. O., & Zuñiga, A. D. G. (2020). Análise sensorial de cookie desenvolvidos com farinha da casca de abacaxi (Ananas comosus (L.) Merril). Research, Society and Development, 9(4), e45942816. https://doi.org/10.33448/rsd-v9i4.2816
Strickling, J. ., Harmon, D. ., Dawson, K. ., & Gross, K. . (2000). Evaluation of oligosaccharide addition to dog diets: influences on nutrient digestion and microbial populations. Animal Feed Science and Technology, 86(3–4), 205–219. https://doi.org/10.1016/S0377-8401(00)00175-9
Wang, S. Y., & Lin, H.-S. (2000). Antioxidant Activity in Fruits and Leaves of Blackberry, Raspberry, and Strawberry Varies with Cultivar and Developmental Stage. Journal of Agricultural and Food Chemistry, 48(2), 140–146. https://doi.org/10.1021/jf9908345
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Caroline Mantovani Celegatti; Thaísa de Menezes Alves Moro; Aline de Souza Lopes; Ana Paula Aparecida Pereira; Glaucia Maria Pastore; Pedro H. Campelo; Maria Teresa Pedrosa Silva Clerici
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.