In vitro maturation of domestic cat oocytes subjected to different incubation times

Authors

DOI:

https://doi.org/10.33448/rsd-v10i3.13074

Keywords:

Domestic feline; First polar body; Maturation; Meiotic competence.

Abstract

The aim of this study was to evaluate the effect of three different incubation times on in vitro maturation of domestic cat oocytes. Thus, ovaries (n = 42) were submitted to slicing procedure and the oocytes recovered were classified; only good quality oocytes (Grade I and II) underwent in vitro maturation for three different periods (24 vs. 30 vs. 36 h) in supplemented TCM-99 medium. After, oocytes were evaluated for cumulus cell expansion and presence of the first polar body. After six replicates (7 ± 1,7 ovaries per replicate), a total of 334 viable oocytes were recovered. Differences (p <0.05) were observed regarding the percentage of oocytes presenting expansion of the cumulus cells, where higher values were observed in the group of oocytes incubated for 36 h (84.3%), when compared to 30 (73.4%) and 24 h (71.0%). Moreover, differences were also observed regarding the presence of the first polar body (24 h: 29.7%; 30 h: 58.2%; 36 h: 69.8%). We conclude that the incubation period influenced the maturation rates, indicating 36 h as the ideal period for the in vitro maturation of domestic cat oocytes in supplemented TCM-199 medium.

References

Baudi, D. L. K., Spercorski, K. M., & Morais R. N. (2006). Maturação in vitro de ovócitos de gata doméstica (Felis catus). Arch Vet Sci, 11, 19-22.

Bogliolo, L., Leoni, G., Ledda, S., Zedda, M. T., Bonelli, P., Madau, L., Santucciu, C., Naitana, S., & Pau, S. (2004). M-phase promoting factor (MPF) and mitogen activated protein kinases (MAPK) activities of domestic cat oocytes matured in vitro and in vivo. Cloning Stem Cells, 6, 15-23.

Brusentsev, E. Kizilova, E., Mokrousova, V., Kozhevnikova, V., Rozhkova, I., & Amstislavsky, S. (2018). Characteristics and fertility of domestic cat epididymal spermatozoa cryopreserved with two different freezing media. Theriogenology, 110, 148-152.

Comizzoli, P., Wildt, D. E., Pukazhenthi, B. S. (2003). Overcoming poor in vitro nuclear maturation and developmental competence of domestic cat oocytes during the non-breeding season. Reproduction, 126, 809-816.

Das, D., Khan, P. P., & Maitra, S. (2017). Endocrine and paracrine regulation of meiotic cell cycle progression in teleost oocytes: cAMP at the centre of complex intra-oocyte signalling events. Gen Comp Endocr, 241, 33-40.

Demir, K., Can, A., Ertürk, E., Özdemirci, S., Karaçam, H., Sandal, A. I., Öztürk, G.B., Arici, R., Çinar, E. M., Birler, S., Pabuccuoğlu, S., Kemal, A. K., & Evecen, M. (2014). Effect of different activation techniques on immature and in vitro matured cat oocytes. Kafkas Univ Vet Fak, 20, 565-570.

Dos Santos, E. R. J., Chaves, R. M., Lima, P. F., & Oliveira, M. A. L. (2013). Avaliação de oócitos caprinos submetidos à estresse calórico induzido durante a maturação in vitro. Acta Sci Vet, 41, 1-7.

Eftekhar, M., Mohammadian, F., Yousefnejad, F., Khani, P., & Aflatoonian, A. (2012). Effect of calcium ionophore on unfertilized oocytes after ICSI cycles. Iran J Reprod Med, 10, 83-86.

Evecen, M., Pabuccuoğlu, S., Demir, K., Yağcioğlu, S., Can, A., Ertürk, E., Sandal, A. İ., Arici, R., Öztürk, G., Kemal, A. K., & Birler, S. (2016). Somatic cloning in cats using MI or MII oocytes. Kafkas Univ Vet Fak Derg, 6, 923-928.

Fernandez-Gonzalez, L., Hribal, R., Stagegaard, J., Zahmel, J., & Jewgenow, K. (2015). Production of lion (Panthera leo) blastocysts after in vitro maturation of oocytes and intracytoplasmic sperm injection. Theriogenology, 83, 995-999.

Gómez, M. C., Pope, C. E., & Dresser, B. L. (2006). Nuclear transfer in cats and its application. Theriogenology, 66, 72-81.

Hribal, R., Jewgenow, K., Braun, B. C., & Comizzoli, P. (2013). Influence of culture medium composition on relative mRNA abundances in domestic cat embryos. Reprod Domest Anim, 48, 245-251.

Jewgenow, K., Fernandez-Gonzalez, L., Jänsch, S., Viertel, D., & Zahmel, J. (2019). Brilliant cresyl blue staining allows the selection for developmentally competent immature feline oocytes. Theriogenology, 126, 320-325.

Jiang, H., Wang, C., Guan, J., Wang, L., & Li, Z. (2015). Changes of spontaneous parthenogenetic activation and development potential of golden hamster oocytes during the aging process. Acta histochem, 117, 104-110.

Johnston, L. A., O'brien, S. J., & Wildt, D. E. (1989). In vitro maturation and fertilization of domestic cat follicular oocytes. Gamete Res, 24, 343-356.

Karja, N. W. K., Otoi, T., Murakami, M., Fahrudin, M., & Suzuki, T. (2002). In vitro maturation, fertilization and development of domestic cat oocytes recovered from ovaries collected at three stages of the reproductive cycle. Theriogenology, 57, 2289-2298.

Katska-Ksiazkiewicz, L., Ryńska, B., Kania, G., Smorąg, Z., Gajda, B., & Pieńkowski, M. (2003). Timing of nuclear maturation of nonstored and stored domestic cat oocytes. Theriogenology, 59, 1567-1574.

Kochan, J., Agnieszka, N., Wojciech, N., Prochowska, S., Migdał, A., Młodawska, W., Partyka, A., & Witkowski, M. (2018). Developmental competence of cat (Felis domesticus) oocytes and embryos after parthenogenetic stimulation using different methods. Zygote, 26, 119-126.

Kunkitti, P., Axnér, E., Bergqvist, A.S., & Sjunnesson, Y. (2016). In vitro fertilization using frozen-thawed feline epididymal spermatozoa from corpus and cauda regions. Theriogenology, 86, 1403-1408.

Lonergan, P., & Fair, T. (2016). Maturation of oocytes in vitro. Annu Rev Anim Biosci, 4, 255-268.

Martins, L. R., & Lopes, M. D. (2008). Fecundação in vitro no gato doméstico. Acta Sci Vet, 36, 179-186.

Moulavi, F., Hosseini, S. M., Tanhaie-Vash, N., Ostadhosseini, S., Hosseini, S. H., Hajinasrollah, M., Asghari, M. H, Gourabi, H., Shahverdi, A., Vosough, A. D., & Nasr-Esfahani, M. H. (2017). Interspecies somatic cell nuclear transfer in Asiatic cheetah using nuclei derived from post-mortem frozen tissue in absence of cryo-protectant and in vitro matured domestic cat oocytes. Theriogenology, 90, 197-203.

Nagano, M., Uchikura, K., Takahashi, Y., & Hishinuma, M. (2008). Effect of duration of in vitro maturation on nuclear maturation and fertilizability of feline oocytes. Theriogenology, 69, 231-236.

Ochota, M., & Niżański, W. (2017). Time of early cleavage affects the developmental potential of feline preimplantation embryos in vitro. Theriogenology, 89, 26-31.

Oliveira, E. G., Polisseni, J., Guerra, M. O., & Peters, V. M. (2009). Mecanismos fisiológicos e bioquímicos envolvidos na ovogênese. Rev Int Est Exp, 1, 29-33.

Otero, R. A., Costa, E. P., & Pereira, E. M. (2017). Maturação nuclear in vitro de ovócitos bovinos selecionados pelo método azul cresil brilhante. Rev Colombiana Cienc Anim, 9, 345-354.

Pan, B., & Li, J. (2019). The art of oocyte meiotic arrest regulation. Reprod Biol Endocrin, 17, 1-12.

Pieri, N. C. G., Souza, A. F., Casals, J. B., Roballo, K. C. S., Ambrósio, C. E., & Martins, D. S. (2015). Comparative development of embryonic age by organogenesis in domestic dogs and cats. Reprod Domest Anim, 50, 625-631.

Prochowska, S., Nizanski, W., Partyka, A., Kochan, J., Młodawska, W., Nowak, A., Skotnicki, J., Gega, T., & Palys, M. (2019). The use of human and bovine commercial media for oocyte maturation and embryo development in the domestic cat (Felis catus). Reprod Domest Anim, 54, 719-726.

Rao, B. S., Mahesh, Y. U., Suman, K., Charan, K. V., Nath, R., & Rao, K. R. (2015). Meiotic maturation of oocytes recovered from the ovaries of Indian big cats at postmortem. In Vitro Cell Dev Biol Anim, 51, 19-25.

Snoeck, F., Sarrazin, S., Wydooghe, E., & Van Soom, A. (2016). Age and anti-Müllerian hormone levels predict the success of in vitro maturation of cat oocytes. Reprod Domest Anim, 52, 98-102.

Sowińska, N., Frankowska, K., Filipczyk, A., Adamaszek, A., Nalik, K., Fic, K., & Pietsch‐Fulbiszewska. (2016). The effect of cumulus cells on domestic cat (Felis catus) oocytes during in vitro maturation and fertilization. Reprod Domest Anim, 52, 108-113.

Sowińska, N., Müller, K., Niżański, W., & Jewgenow, K. (2017). Mitochondrial characteristics in oocytes of the domestic cat (Felis catus) after in vitro maturation and vitrification. Reprod Domest Anim, 52, 806–813.

Sun, X. S., Yue, K. Z., Zhou, J. B., Chen, Q. X., & Tan, J. H. (2002). In vitro spontaneous parthenogenetic activation of golden hamster oocytes. Theriogenology, 57, 845-851.

Thongphakdee, A., Sukparangsi, W., Comizzoli, P., & Chatdarong, K. (2020). Reproductive biology and biotechnologies in wild felids. Theriogenology, 150, 360-373.

Veraguas, D., Gallegos, P. F., Velasquez, A. E., Castro, F. O., & Rodriguez-Alvarez, L. (2017). FSH stimulation of anestrous cats improves oocyte quality and development of parthenogenetic embryos. Theriogenology, 87, 25-35.

Wlodarczyk, R., Bukowska, D., Jackowska, M., Mucha, S., & Jaskowski, J.M. (2009). In vitro maturation and degeneration of domestic cat oocytes collected from ovaries stored at various temperatures. Vet Med-Czech, 54, 491-497.

Wolfe, B. A., & Wildt, D. E. (1996). Development to blastocysts of domestic cat oocytes matured and fertilized in vitro after prolonged cold storage. J Reprod Infertil, 106, 135-141.

Wood, T. C., & Wildt, D. E. (1997). Effect of the quality of the cumulus-oocyte complex in the domestic cat on the ability of oocytes to mature, fertilize and develop into blastocyst in vitro. J Reprod Infertil, 110, 355-360.

Zhong, Y., Lin, J., Liu, X., Hou, J., Zhang, Y., & Zhao, X. (2015). C-Type natriuretic peptide maintains domestic cat oocytes in meiotic arrest. Reprod Fertil Dev, 28, 1553-1559.

Downloads

Published

10/03/2021

How to Cite

FERNANDES , D. P. .; SANTOS , F. A. dos .; MACÊDO, L. B. de .; IZZO, R. G. .; BARBOSA, B. de S. .; PIMENTEL, M. M. L. .; PEREIRA, A. F. .; BEZERRA, M. B. . In vitro maturation of domestic cat oocytes subjected to different incubation times. Research, Society and Development, [S. l.], v. 10, n. 3, p. e15710313074, 2021. DOI: 10.33448/rsd-v10i3.13074. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/13074. Acesso em: 14 apr. 2021.

Issue

Section

Agrarian and Biological Sciences