Genetic and phenotypic analysis in free-pollination progenies of Mimosa caesalpiniifolia Benth.: implications for genetic improvement

Authors

DOI:

https://doi.org/10.33448/rsd-v10i3.13096

Keywords:

Seasonally dry tropical forest; Forest improvement; Molecular marker; Phenotype; Inter Simple Sequence Repeat.

Abstract

Mimosa caesalpiniifolia Benth. (Fabaceae) is a tree native to the semiarid region of Northeast Brazil, which presents growing economic potential for the exploitation of timber and non-timber forest products. The presence of aggressive prickles in most plants of this species makes it difficult to manage the stands, but there are specimens without prickles that can be used to get around this inconvenience. Our objective was to determine the phenotypic frequency of the character absence/presence of prickles in progenies of free pollination of a cultivated population of M. caesalpiniifolia, and to access the genetic diversity of individuals of the phenotype without prickles of this population. Genetic diversity was accessed using molecular markers Inter Simple Sequence Repeat (ISSR) and phenotyping for the presence/absence of prickles was determined in young individuals from nine free-pollination progenies from three phenotype trees with prickles and six phenotype trees without prickles. The Shannon index (I), Nei genetic diversity (He), percentage of polymorphic bands (P) and Nei genetic identity were calculated. The absence of prickles (77%) was higher that presence prickles (23%). The predominance of the absence of prickles phenotype and the moderate levels of genetic diversity (P = 64%; He = 0.208 and I = 0.315) among individuals with this phenotype may be because of artificial selection for the absence of prickles phenotype in the source population.

References

Akagi, T., Hanada, T., Yaegaki, H., Gradziel, T. M., & Tao, R. (2016). Genome-wide view of genetic diversity reveals paths of selection and cultivar differentiation in peach domestication. DNA Research, 23 (3), 271-282. https://doi.org/10.1093/dnares/dsw014

Alencar, F. H. H., Paes, J. B., Bakke, O. A., & Silva, G. S. da. (2011). Wood natural resistance of Mimosa caesalpiniifolia Benth. to subterranean termites. Revista Caatinga, 24 (1), 57-64. https://periodicos.ufersa.edu.br/index.php/caatinga/article/view/1531

Araújo, F. dos, S., Pacheco, M. V., Vieira, F. de, A., Ferrari, C. dos, S., Félix, F. C., & Chagas, K. P. T das. (2016). ISSR molecular markers for the study of the genetic diversity of Mimosa caesalpiniaefolia Benth. Idesia, 34 (3), 47-52. http://dx.doi.org/10.4067/S0718-34292016000300007

Araujo, J. B. S., & Paes, J. B. (2018). Natural wood resistance of Mimosa caesalpiniifolia in field testing. Floresta e Ambiente, 25 (2), e20150128. https://doi.org/10.1590/2179-8087.012815

Botstein, D., White, R. L., Skolnick, M., & Davis, R. W. (1980). Construction of a genetic linkage map in man using restriction fragment length polymorphisms. The American Journal of Human Genetics, 32 (3), 314-331. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1686077/

Brasil. Ministério da Agricultura, Pecuária e Abastecimento. (2013). Instruções para Análises de Sementes de Espécies florestais. Brasília: MAPA/ACS. https://www.gov.br/agricultura/pt-br/assuntos/laboratorios/arquivos-publicacoes-laboratorio/florestal_documento_pdf-ilovepdf-compressed.pdf/view

Carvalho, J. H. de, Maia, C. M. N. A., & Amorim, G. C. de. (1990). Seleção de sabiá (Mimosa caesalpiniaefolia Benth.), leguminosa madeireira e forrageira, para obtenção de plantas sem acúleos. Mossoró: ESAM Coleção Mossoroense.

Döhler, T. L., & Pina, W. da, C. (2017). Flower-visiting bees (Hymenoptera: Apoidea) of sabiá (Mimosa Caesalpiniifolia Benth.) in Teixeira de Freitas, Bahia, Brazil. Scientia Plena, 13 (8), 088001-1. https://doi.org/10.14808/sci.plena.2017.088001

Doyle, J. J., & Doyle, J. L. (1987). Isolation of plant DNA from fresh tissue. Focus, 12, 13-15.

Ingvarsson, P. K., & Dahlberg, H. (2019). The effects of clonal forestry on genetic diversity in wild and domesticated stands of forest trees. Scandinavian Journal of Forest Research, 34 (5), 370-379. https://doi.org/10.1080/02827581.2018.1469665

Lewontin, R. C. (1972). Testing the theory of natural selection. Nature, 236, 181-182. https://doi.org/10.1038/236181a0

Lima, I. C. A. R. de, Lira, M. de, A., Mello, A. C. L. de, Santos, M. V. F. dos, Freitas, E. V. de, & Ferreira, R. L. C. (2008). Avaliação de sabiazeiro (Mimosa caesalpiniaefolia Benth.) quanto a acúleos e preferência por bovinos. Revista Brasileira de Ciências Agrárias, 3 (3), 289-294. https://doi.org/10.5039/agraria.v3i3a345

Lins, T. R. da, S., Braz, R. L., Souza-Junior, C. C. G. C. de, Correia, H. T. V., Silva, T. C., & Walter, L. S. (2020). Yield and characterization of charcoal from Mimosa caesalpiniifolia Benth. branches. Biofix Scientific Journal, 5 (1), 39-43. http://dx.doi.org/10.5380/biofix.v5i1.67394

Martins, P. G. S., Lira-Junior, M. A., Fracetto, G. G. M., Silva, M. L. R. B. da, Vincentin, R. P., & Lyra, M. do, C. C. P de. (2015). Mimosa caesalpiniifolia rhizobial isolates from different origins of the Brazilian Northeast. Archives of Microbiology, 197, 459-469. https://doi.org/10.1007/s00203-014-1078-8

Nei, M. (1973). Analysis of gene diversity in subdivided populations. Proceedings of the National Academy of Sciences of the United States of America, 70 (12), 3321-3323. https://doi.org/10.1073/pnas.70.12.3321

Nei, M. (1978). Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics, 89, 90-583. https://www.genetics.org/content/89/3/583

Pereira, A. S., Shitsuka, D. M., Parreira, F. J., & Shitsuka, R. (2018). Metodologia da pesquisa científica. Santa Maria: UFSM/NTE. https://repositorio.ufsm.br/bitstream/handle/1/15824/Lic_Computacao_Metodologia-Pesquisa-Cientifica.pdf?sequence=1

Pritchard, H. W., Moat, J. F., Ferraz, J. B. S., Marks, T. R., Camargo, J. L. C., Nadarajan, J., & Ferraz, I. D. K. (2014). Innovative approaches to the preservation of forest trees. Forest Ecology and Management, 333 (1), 88-98. https://doi.org/10.1016/j.foreco.2014.08.012

Rohlf, F. J. (2000). NTSYS-pc: numerical taxonomy and multivariate analysis system, version 2.1. New York: Exeter Software.

Silva-Júnior, A. L., Souza, L. C., Pereira, A. G., & Miranda, F. D. (2017). Genetic diversity of Schizolobium parahyba var. amazonicum (Huber ex. Ducke) Barneby, in a forest area in Brazil. Genetics and Molecular Research, 16 (3), e2017. https://doi.org/10.4238/gmr16039774

Yeh, F. C., Boyle, T. Y. Z., & Xiyan, J. M. (1999). Popgene version 131: Microsoft Window-based freeware for population genetic analysis. Edmonton: Alberta.

Yiing, T. S., Fu, C. S., Seng, H. W., & Ling, P. S. (2014). Genetic diversity of Neolamarckia cadamba using dominant DNA markers based on Inter-Simple Sequence Repeats (ISSRs) in Sarawak. Advances in Applied Science Research, 5 (3), 458-463.

Zhang, J., Chen, T., Wang, Y., Chen, Q., Sun, B., Luo, Y., Zhang, Y., Tang, H., & Wang, X. (2018). Genetic diversity and domestication footprints of chinese cherry [Cerasus pseudocerasus (Lindl.) G. Don] as revealed by nuclear microsatellites. Frontiers in Plant Science, 9 (238), 01-13, 2018. https://doi.org/10.3389/fpls.2018.00238

Published

12/03/2021

How to Cite

ARAÚJO, F. dos S.; FÉLIX, F. C. .; SILVA, R. A. R. .; CORREIA, L. A. da S. .; MEDEIROS, J. A. D. de .; FERRARI, C. dos S. .; VIEIRA, F. de A. .; PACHECO, M. V. .; VALENÇA, R. de L. Genetic and phenotypic analysis in free-pollination progenies of Mimosa caesalpiniifolia Benth.: implications for genetic improvement. Research, Society and Development, [S. l.], v. 10, n. 3, p. e19110313096, 2021. DOI: 10.33448/rsd-v10i3.13096. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/13096. Acesso em: 12 apr. 2021.

Issue

Section

Agrarian and Biological Sciences