Evaluation of the thermal properties of PLA/SEBS blends with moringa subjected to degradation in a marine environment
DOI:
https://doi.org/10.33448/rsd-v10i4.13249Keywords:
PLA; SEBS; Moringa oleifera leaf powder; Simulated marine environment.Abstract
In this work, the influence of the SEBS and Moringa Oleifera content on the thermal properties PLA/SEBS blends and of two biocomposites based on two of these blends was investigated. Two PLA/SEBS blends (90/10 and 70/30), two PLA/SEBS/MO biocomposites (90/10/1 and 70/30/1), and a PLA/MO (100/1) biocomposite, were prepared by melt mixing in an open die extruder. The samples for biodegradation were obtained by hot pressing, being subsequently inserted in a simulated marine environment. Degradation development has been evaluated through mass variation, thermogravimetry, and differential scanning calorimetry. It was observed an increase in crystallinity of all the evaluated compositions, and a reduction of the thermal stability after the exposure to the marine environment for prolonged periods This higher crystallinity may be related to the consumption of amorphous regions and the lower thermal stability is linked to the hydrolytic degradation of PLA, due to the water absorbed by the moringa powder. The evaluation of the mass variation showed that the mixtures with SEBS and Moringa, presented a degradation rate equivalent or lower to that reported for neat PLA.
References
Abdelwahab, M. A., Flynn, A., Chiou, B.-S., Imam, S., Orts, W., & Chiellini, E. (2012). Thermal, mechanical and morphological characterization of plasticized PLA–PHB blends. Polymer Degradation and Stability, 97(9), 1822–1828.
Alegbeleye, O. O. (2018). How functional is Moringa Oleifera? A review of its nutritive, medicinal, and socioeconomic potential. Food and Nutrition Bulletin, 39(1), 149–170.
Alias, N. F., & Ismail, H. (2019). An overview of toughening polylactic acid by an elastomer. Polymer-Plastics Technology and Materials, 58(13), 1399–1422.
Balakrishnan, H., Hassan, A., & Wahit, M. U. (2010). Mechanical, thermal, and morphological properties of polylactic acid/linear low density polyethylene blends. Journal of Elastomers & Plastics, 42(3), 223–239.
Bernardes, G. P., da Rosa Luiz, N., Santana, R. M. C., & de Camargo Forte, M. M. (2019). Rheological behavior and morphological and interfacial properties of PLA/TPE blends. Journal of Applied Polymer Science, 136(38), 47962.
Capitain, C., Ross-Jones, J., Möhring, S., & Tippkötter, N. (2020). Differential scanning calorimetry for quantification of polymer biodegradability in compost. International Biodeterioration & Biodegradation, 149, 104914.
Carrasco, F., & Pagès, P. (2008). Thermal degradation and stability of epoxy nanocomposites: Influence of montmorillonite content and cure temperature. Polymer Degradation and Stability, 93(5), 1000–1007. https://doi.org/10.1016/j.polymdegradstab.2008.01.018
Carrasco, F., Pagès, P., Gámez-Pérez, J., Santana, O. O., & Maspoch, M. L. (2010). Processing of poly(lactic acid): Characterization of chemical structure, thermal stability and mechanical properties. Polymer Degradation and Stability, 95(2), 116–125.https://doi.org/10.1016/j.polymdegradstab.2009.11.045
Chang, J., An, Y. U., & Sur, G. S. (2003). Poly (lactic acid) nanocomposites with various organoclays. I. Thermomechanical properties, morphology, and gas permeability. Journal of Polymer Science Part B: Polymer Physics, 41(1), 94–103.
Chow, W. S., Tham, W. L., Poh, B. T., & Ishak, Z. A. M. (2018). Mechanical and thermal oxidation behavior of poly (Lactic Acid)/halloysite nanotube nanocomposites containing N, N′-Ethylenebis (Stearamide) and SEBS-g-MA. Journal of Polymers and the Environment, 26(7), 2973–2982.
Dhar, P., & Katiyar, V. (2017). Thermal degradation kinetics of polylactic acid/acid fabricated cellulose nanocrystal based bionanocomposites. International Journal of Biological Macromolecules, 104, 827–836.
Dias, P. D. P., & Chinelatto, M. A. (2019). Effect of poly (ε-caprolactone-b-tetrahydrofuran) triblock copolymer concentration on morphological, thermal and mechanical properties of immiscible PLA/PCL blends. Journal of Renewable Materials, 7(2), 129–138.
Falowo, A. B., Mukumbo, F. E., Idamokoro, E. M., Lorenzo, J. M., Afolayan, A. J., & Muchenje, V. (2018). Multi-functional application of Moringa oleifera Lam. in nutrition and animal food products: A review. Food Research International, 106, 317–334.
Fortunati, E., Puglia, D., Kenny, J. M., Haque, M. M.-U., & Pracella, M. (2013). Effect of ethylene-co-vinyl acetate-glycidylmethacrylate and cellulose microfibers on the thermal, rheological and biodegradation properties of poly (lactic acid) based systems. Polymer Degradation and Stability, 98(12), 2742–2751.
Gabbott, P. (2008). Principles and applications of thermal analysis. John Wiley & Sons.
George, A., Sanjay, M. R., Srisuk, R., Parameswaranpillai, J., & Siengchin, S. (2020). A comprehensive review on chemical properties and applications of biopolymers and their composites. International Journal of Biological Macromolecules, 154, 329–338.
Gunti, R., Ratna Prasad, A. V, & Gupta, A. (2018). Mechanical and degradation properties of natural fiber‐reinforced PLA composites: Jute, sisal, and elephant grass. Polymer Composites, 39(4), 1125–1136.
Gupta, S., Jain, R., Kachhwaha, S., & Kothari, S. L. (2018). Nutritional and medicinal applications of Moringa oleifera Lam.—Review of current status and future possibilities. Journal of Herbal Medicine, 11, 1–11.
Hakim, R. H., Cailloux, J., Santana, O. O., Bou, J., Sánchez‐Soto, M., Odent, J., Raquez, J.-M., Dubois, P., Carrasco, F., & Maspoch, M. L. (2017). PLA/SiO2 composites: Influence of the filler modifications on the morphology, crystallization behavior, and mechanical properties. Journal of Applied Polymer Science, 134(40), 45367.
Haque, M. M.-U., Alvarez, V., Paci, M., & Pracella, M. (2011). Processing, compatibilization and properties of ternary composites of Mater-Bi with polyolefins and hemp fibres. Composites Part A: Applied Science and Manufacturing, 42(12), 2060–2069.
Iovino, R., Zullo, R., Rao, M. A., Cassar, L., & Gianfreda, L. (2008). Biodegradation of poly (lactic acid)/starch/coir biocomposites under controlled composting conditions. Polymer Degradation and Stability, 93(1), 147–157.
Jia, C., Lu, P., & Zhang, M. (2020). Preparation and Characterization of Environmentally Friendly Controlled Release Fertilizers Coated by Leftovers-Based Polymer. Processes, 8(4), 417.
Jose, S., Thomas, S., Lievana, E., & Karger‐Kocsis, J. (2005). Morphology and mechanical properties of polyamide 12 blends with styrene/ethylene–butylene/styrene rubbers with and without maleation. Journal of Applied Polymer Science, 95(6), 1376–1387.
Juárez, D., Ferrand, S., Fenollar, O., Fombuena, V., & Balart, R. (2011). Improvement of thermal inertia of styrene–ethylene/butylene–styrene (SEBS) polymers by addition of microencapsulated phase change materials (PCMs). European Polymer Journal, 47(2), 153–161.
Krishnan, S., Mohanty, S., & Nayak, S. K. (2018). An eco-friendly approach for toughening of polylactic acid from itaconic acid based elastomer. Journal of Polymer Research, 25(1), 1–8.
Li, D., Shentu, B., & Weng, Z. (2011). Morphology, rheology, and mechanical properties of polylactide/poly (ethylene-co-octene) blends. Journal of Macromolecular Science, Part B, 50(10), 2050–2059.
Lima, J. C. C., Araújo, E. A. G., Agrawal, P., & Mélo, T. J. A. (2019). PLA/SEBS Bioblends: Influence of SEBS Content and of Thermal Treatment on the Impact Strength and Morphology. Macromolecular Symposia, 383(1), 1700072. https://doi.org/10.1002/masy.201700072
Liu, Y., Wang, X., Wei, X., Gao, Z., & Han, J. (2018). Values, properties and utility of different parts of Moringa oleifera: An overview. Chinese Herbal Medicines, 10(4), 371–378.
Merino, D., Mansilla, A. Y., Casalongué, C. A., & Alvarez, V. A. (2019). Performance of bio-based polymeric agricultural mulch films. In Polymers for Agri-food applications (pp. 215–240). Springer.
Mishra, K., & Sinha, S. (2020). Development and assessment of Moringa oleifera (Sahajana) leaves filler/epoxy composites: Characterization, barrier properties and in situ determination of activation energy. Polymer Composites, 41(12), 5016–5029.
Mittal, A., Garg, S., & Bajpai, S. (2020). Thermal decomposition kinetics and properties of grafted barley husk reinforced PVA/starch composite films for packaging applications. Carbohydrate Polymers, 240, 116225.
Muniyasamy, S., Ofosu, O., John, M. J., & Anandjiwala, R. D. (2016). Mineralization of poly (lactic acid)(PLA), poly (3-hydroxybutyrate-co-valerate)(PHBV) and PLA/PHBV blend in compost and soil environments. Journal of Renewable Materials, 4(2), 133–145.
Nehra, R., Maiti, S. N., & Jacob, J. (2018a). Analytical interpretations of static and dynamic mechanical properties of thermoplastic elastomer toughened PLA blends. Journal of Applied Polymer Science, 135(1), 1–13. https://doi.org/10.1002/app.45644
Nehra, R., Maiti, S. N., & Jacob, J. (2018b). Effect of Thermoplastic Elastomer on Melt Rheological and Fracture Behavior of Poly (Lactic Acid). Polymer-Plastics Technology and Engineering, 57(12), 1254–1264.
Palsikowski, P. A., Kuchnier, C. N., Pinheiro, I. F., & Morales, A. R. (2018). Biodegradation in soil of PLA/PBAT blends compatibilized with chain extender. Journal of Polymers and the Environment, 26(1), 330–341.
Park, S.-B., Lih, E., Park, K.-S., Joung, Y. K., & Han, D. K. (2017). Biopolymer-based functional composites for medical applications. Progress in Polymer Science, 68, 77–105.
Paul, M.-A., Delcourt, C., Alexandre, M., Degée, P., Monteverde, F., & Dubois, P. (2005). Polylactide/montmorillonite nanocomposites: study of the hydrolytic degradation. Polymer Degradation and Stability, 87(3), 535–542.
Pelegrini, K., Donazzolo, I., Brambilla, V., Coulon Grisa, A. M., Piazza, D., Zattera, A. J., & Brandalise, R. N. (2016). Degradation of PLA and PLA in composites with triacetin and buriti fiber after 600 days in a simulated marine environment. Journal of Applied Polymer Science, 133(15), n/a-n/a. https://doi.org/10.1002/app.43290
Pereira, A. S., Shitsuka, D. M., Parreira, F. J., & Shitsuka, R. (2018). Metodologia da pesquisa científica.
Pérez, I. P., Pasandín, A. M. R., Pais, J. C., & Pereira, P. A. A. (2019). Use of lignin biopolymer from industrial waste as bitumen extender for asphalt mixtures. Journal of Cleaner Production, 220, 87–98.
Pollet, E., Paul, M.-A., & Dubois, P. (2003). New aliphatic polyester layered-silicate nanocomposites. In Biodegradable polymers and plastics (pp. 327–350). Springer.
Qi, R., Luo, M., & Huang, M. (2011). Synthesis of styrene–ethylene–butylene–styrene triblock copolymer‐g‐polylactic acid copolymer and its potential application as a toughener for polylactic acid. Journal of Applied Polymer Science, 120(5), 2699–2706.
Ramsay, B. A., Langlade, V., Carreau, P. J., & Ramsay, J. A. (1993). Biodegradability and mechanical properties of poly-(beta-hydroxybutyrate-co-beta-hydroxyvalerate)-starch blends. Applied and Environmental Microbiology, 59(4), 1242–1246.
Sanjay, M. R., Madhu, P., Jawaid, M., Senthamaraikannan, P., Senthil, S., & Pradeep, S. (2018). Characterization and properties of natural fiber polymer composites: A comprehensive review. Journal of Cleaner Production, 172, 566–581.
Soni, R., Kapri, A., Zaidi, M. G. H., & Goel, R. (2009). Comparative biodegradation studies of non-poronized and poronized LDPE using indigenous microbial consortium. Journal of Polymers and the Environment, 17(4), 233.
Tejada-Oliveros, R., Balart, R., Ivorra-Martinez, J., Gomez-Caturla, J., Montanes, N., & Quiles-Carrillo, L. (2021). Improvement of Impact Strength of Polylactide Blends with a Thermoplastic Elastomer Compatibilized with Biobased Maleinized Linseed Oil for Applications in Rigid Packaging. Molecules, 26(1), 240.
Tsou, C.-H., Kao, B.-J., Yang, M.-C., Suen, M.-C., Lee, Y.-H., Chen, J.-C., Yao, W.-H., Lin, S.-M., Tsou, C.-Y., Huang, S.-H., De Guzman, M., & Hung, W.-S. (2015). Biocompatibility and characterization of polylactic acid/styrene-ethylene-butylene-styrene composites. Bio-Medical Materials and Engineering, 26(s1), S147–S154. https://doi.org/10.3233/BME-151300
Valenga, M. G. P., Boschen, N. L., Rodrigues, P. R. P., & Maia, G. A. R. (2019). Agro-industrial waste and Moringa oleifera leaves as antioxidants for biodiesel. Industrial Crops and Products, 128, 331–337.
Verma, D., Fortunati, E., Jain, S., & Zhang, X. (2019). Biomass, Biopolymer-Based Materials, and Bioenergy: Construction, Biomedical, and Other Industrial Applications. Woodhead Publishing.
Vigneshwaran, S., Sundarakannan, R., John, K. M., Johnson, R. D. J., Prasath, K. A., Ajith, S., Arumugaprabu, V., & Uthayakumar, M. (2020). Recent advancement in the natural fiber polymer composites: a comprehensive review. Journal of Cleaner Production, 124109.
Wang, Y., Wei, Z., & Li, Y. (2018). Toughening polylactide with epoxidized styrene–butadiene impact resin: Mechanical, morphological, and rheological characterization. Journal of Applied Polymer Science, 135(13), 1–8. https://doi.org/10.1002/app.46058
Wilkinson, A. N., Clemens, M. L., & Harding, V. M. (2004). The effects of SEBS-g-maleic anhydride reaction on the morphology and properties of polypropylene/PA6/SEBS ternary blends. Polymer, 45(15), 5239–5249.
Yahya, E. B., Jummaat, F., Amirul, A. A., Adnan, A. S., Olaiya, N. G., Abdullah, C. K., Rizal, S., Mohamad Haafiz, M. K., & Khalil, H. P. S. (2020). A review on revolutionary natural biopolymer-based aerogels for antibacterial delivery. Antibiotics, 9(10), 648.
Yan, J., & Spontak, R. J. (2019). Toughening Poly (lactic acid) with Thermoplastic Elastomers Modified by Thiol–ene Click Chemistry. ACS Sustainable Chemistry & Engineering, 7(12), 10830–10839.
Zhang, G., Zhang, J., Zhou, X., & Shen, D. (2003). Miscibility and phase structure of binary blends of polylactide and poly (vinylpyrrolidone). Journal of Applied Polymer Science, 88(4), 973–979.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Jéssica Camilla da Costa Lima; Rosmary Nichele Brandalise; Yêda Medeiros Bastos de Almeida; Tomás Jeferson Alves de Melo; Glória Maria Vinhas
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.