Development of a 3D polyetheretherketone structure that mimics the cranial bone morphology for use in cranioplasty

Authors

DOI:

https://doi.org/10.33448/rsd-v10i3.13336

Keywords:

3D structure; Polyetheretherketone; Cranial bone; Salt leaching technique.

Abstract

Cranioencephalic traumatism (TBI) is a common situation in trauma hospitals and has become responsible for high rates of mortality worldwide. When the victim of TBI is affected by injuries to the skullcap with a need for grafting, problems regarding the availability of suitable and affordable materials eventually happen. In this study, a 3D structure of Polyetheretherketone (PEEK) that mimics the cranial bone morphology for use in cranioplasty was developed. Samples of different formulations, in the form of round bars, were obtained through uniaxial compression, and porosity was controlled by the salt leaching technique. Then, the specimens were characterized in terms of pore morphology and distribution, surface roughness, compression resistance and cytotoxicity. Results exhibited high levels of similarity of the 3D strutures of PEEK to the natural human bone, which indicates the effectiveness of the proposed method in mimicking the morphology of the compact/porous/compact system of the skullcap (diploe).

References

Alonso-Rodriguez, E., Cebrián, J. L., Nieto, M. J., Del Castillo, J. L., Hernández-Godoy, J. & Burgueño, M. (2015). Polyetheretherketone custom-made implants for craniofacial defects: Report of 14 cases and review of the literature. Journal of Cranio-Maxillo-Facial Surgery, 43 (7), 1232-1238.

Alves, N. M., Pashkuleva, I., Reis, R. L. & Mano, J. F. (2010). Controlling cell behavior through the design of polymer surfaces. Small, 6 (20), 2208-2220.

Arima, Y. & Iwata, H. (2007). Effect of wettability and surface functional groups on protein adsorption and cell adhesion using well-defined mixed self-assembled monolayers. Biomaterials, 28 (20), 3074-3082.

Bavisetty, S., Bavisetty, S., McArthur, D. L., Dusick, J. R., Wang, C., Cohan, P., Boscardin, W. J., Swerdloff, R., Levin, H., Chang, D. J., Muizelaar, J. P. & Kelly, D. F. (2008). Chronic hypopituitarism after traumatic brain injury: risk assessment and relationship to outcome. Neurosurgery, 62 (5), 1080-1094.

Dowling, D. P., Miller, I. S., Ardhaoui, M. & Gallagher, W. M. (2011) Effect of surface wettability and topography on the adhesion of osteosarcoma cells on plasma-modified polystyrene. Journal of Biomaterials Applications, 26 (3), 327-347.

International Organization for Standardization. (2009). Biological evaluation of medical devices. Part 5: Tests for in vitro cytotoxicity (ISO Standard No. 10993‐5:2009). https://www.iso.org/standard/36406.html

Gilardino, M. S., Karunanayake, M., Al-Humsi, T., Izadpanah, A., Al-Ajmi, H., Marcoux, J., Atkinson, J. & Farmer, J.P. (2015). A comparison and cost analysis of cranioplasty techniques: autologous bone versus custom computer-generated implants. The Journal of Craniofacial Surgery. 26 (1), 113-117.

Harris, D. A., Fong, A. J., Buchanan, E. P., Monson, L., Khechoyan, D. & Lam, S. (2014). History of synthetic materials in alloplastic cranioplasty. Neurosurg Focus, 36 (4), E20.

Hou, Q., Grijpma, D. W. & Feijen, J. (2003). Porous polymeric structures for tissue engineering prepared by a coagulation, compression moulding and salt leaching technique. Biomaterials, 24 (11), 1937-1947.

Lampin, M., Warocquier-Clérout, Legris, C., Degrange, M. & Sigot-Luizard, M. F. (1997). Correlation between substratum roughness and wettability, cell adhesion, and cell migration. Journal of Biomedical Materials Research Part A, 36 (1), 99-108.

Law, K. Y. (2014). Definitions for Hydrophilicity, Hydrophobicity, and Superhydrophobicity: Getting the Basics Right. The Journal of Physical Chemistry Letters, 5 (4), 686-688.

Li, W., Kang, J., Yuan, Y., Xiao, F., Yao, H., Liu, S., Lu, J., Wang, Y., Wang, Z. & Ren, L. (2016). Preparation and characterization of PVA-PEEK/PVA-β-TCP bilayered hydrogels for articular cartilage tissue repair. Composites Science and Technology, 128(18), 58-64.

Lynnerup, N., Astrup, J. G. & Sejrsen, B. (2005) Thickness of the human cranial diploe in relation to age, sex and general body build. Head & Face Medicine, 20 (1), 1-13.

Olah, L., Filipczak, K., Jaegermann, Z. & Czigány, T. (2006). Synthesis, structural and mechanical properties of porous polymeric scaffolds for bone tissue regeneration based on neat poly(ε‐caprolactone) and its composites with calcium carbonate. Polymers for Advanced Technologies, 17 (11-12), 889-897.

Panayotov, I. V., Orti, V., Cuisinier, F. & Yachouh, J. (2016). Polyetheretherketone (PEEK) for medical applications. Journal of Materials Science: Materials in Medicine, 27 (7), 118.

Punchak, M., Chung, L. K., Lagman, C., Bui, T. T., Lazareff, J., Rezzadeh, K., Jarrahy, R. & Yang, I. (2017). Outcomes following polyetheretherketone (PEEK) cranioplasty: Systematic review and meta-analysis. Journal of Clinical Neuroscience, 41, 30-35.

Reignier, J. & Huneault, M. A. (2006). Preparation of interconnected poly(Ɛ-caprolactone) porous scaffolds by a combination of polymer and salt particulate leaching. Polymer, 47 (13), 4703-4717.

Rentsch, C., Rentsch, B., Heinemann, S., Bernhardt, R., Bischoff, B., Förster, Y., Scharnweber, D. & Rammelt, S. (2014). CM inspired coating of embroidered 3D scaffolds enhances calvaria bone regeneration. BioMed Research International, 2014, 1-15.

Reznik, M., Saeed, Y. & Shutter, L. (2016). Teaching NeuroImages: Severe vasospasm in traumatic brain injury. Neurology, 86 (12), 132-133.

Roozenbeek, B., Maas, A. I. & Menon, D. K. (2013). Changing patterns in the epidemiology of traumatic brain injury. Nature Reviews Neurology, 9 (4), 231-236.

Santos, F. S. F., Ferreira, V. P., Sá, M. D. & Fook, M. V. L. (2017). Modificação da superfície do poli (éter-éter-cetona). Matéria, 22 (4), e-11883.

Shah, A. M., Jung, H. & Skirboll, S. (2014). Materials used in cranioplasty: a history and analysis. Neurosurg Focus, 36 (4), E19.

Stichel, C. C. & Müller, H. W. (1998). Experimental strategies to promote axonal regeneration after traumatic central nervous system injury. Progress in Neurobiology, 56 (2), 119-148.

Stocchetti, N., Paternò, R., Citerio, G., Beretta, L. & Colombo, A. (2012). Traumatic brain injury in an aging population. Neurotrauma, 29(6), 1119-1125.

Tagliaferri, F., Compagnone, C., Korsic, M., Servadei, F. & Kraus, J. (2006). A systematic review of brain injury epidemiology in Europe. Acta Neurochirurgica, 148 (3), 255-268.

Teasdale, G. & Jennett, B. (1974). Assessment of coma and impaired consciousness: a practical scale. Lancet, 2 (7872), 81-84.

Unterberg, A.W., Stover, J., Kress, B. & Kiening, K.L. (2004). Edema and brain trauma. Neuroscience, 129 (4), 1019-1027.

Ventola, C. L. (2014). Medical Applications for 3D Printing: Current and Projected Uses. P T., 39 (10), 704–711.

Wong, V. S. & Langley, B. (2016). Epigenetic changes following traumatic brain injury and their implications for outcome, recovery and therapy. Neuroscience Letters, 625, 23-33.

Yin, H. M., Qian, J. & Zhang, J. (2016). Engineering Porous Poly(lactic acid) Scaffolds with High Mechanical Performance via a Solid State Extrusion/Porogen Leaching Approach. Polymers, 8 (6), 213.

Downloads

Published

16/03/2021

How to Cite

MACEDO, M. D. M.; BRITTO FILHO, C. O.; SOUZA, M. F. de; SOUSA, W. J. B. de; PEDROSA, T. C.; AZEVEDO, A. C. S. de; SANTOS, K. O.; CERQUEIRA, G. R. C. de; GADELHA, F. M. .; FOOK, M. V. L. Development of a 3D polyetheretherketone structure that mimics the cranial bone morphology for use in cranioplasty. Research, Society and Development, [S. l.], v. 10, n. 3, p. e29810313336, 2021. DOI: 10.33448/rsd-v10i3.13336. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/13336. Acesso em: 14 apr. 2021.

Issue

Section

Engineerings