Development of a 3D polyetheretherketone structure that mimics the cranial bone morphology for use in cranioplasty
DOI:
https://doi.org/10.33448/rsd-v10i3.13336Keywords:
3D structure; Polyetheretherketone; Cranial bone; Salt leaching technique.Abstract
Cranioencephalic traumatism (TBI) is a common situation in trauma hospitals and has become responsible for high rates of mortality worldwide. When the victim of TBI is affected by injuries to the skullcap with a need for grafting, problems regarding the availability of suitable and affordable materials eventually happen. In this study, a 3D structure of Polyetheretherketone (PEEK) that mimics the cranial bone morphology for use in cranioplasty was developed. Samples of different formulations, in the form of round bars, were obtained through uniaxial compression, and porosity was controlled by the salt leaching technique. Then, the specimens were characterized in terms of pore morphology and distribution, surface roughness, compression resistance and cytotoxicity. Results exhibited high levels of similarity of the 3D strutures of PEEK to the natural human bone, which indicates the effectiveness of the proposed method in mimicking the morphology of the compact/porous/compact system of the skullcap (diploe).
References
Alonso-Rodriguez, E., Cebrián, J. L., Nieto, M. J., Del Castillo, J. L., Hernández-Godoy, J. & Burgueño, M. (2015). Polyetheretherketone custom-made implants for craniofacial defects: Report of 14 cases and review of the literature. Journal of Cranio-Maxillo-Facial Surgery, 43 (7), 1232-1238.
Alves, N. M., Pashkuleva, I., Reis, R. L. & Mano, J. F. (2010). Controlling cell behavior through the design of polymer surfaces. Small, 6 (20), 2208-2220.
Arima, Y. & Iwata, H. (2007). Effect of wettability and surface functional groups on protein adsorption and cell adhesion using well-defined mixed self-assembled monolayers. Biomaterials, 28 (20), 3074-3082.
Bavisetty, S., Bavisetty, S., McArthur, D. L., Dusick, J. R., Wang, C., Cohan, P., Boscardin, W. J., Swerdloff, R., Levin, H., Chang, D. J., Muizelaar, J. P. & Kelly, D. F. (2008). Chronic hypopituitarism after traumatic brain injury: risk assessment and relationship to outcome. Neurosurgery, 62 (5), 1080-1094.
Dowling, D. P., Miller, I. S., Ardhaoui, M. & Gallagher, W. M. (2011) Effect of surface wettability and topography on the adhesion of osteosarcoma cells on plasma-modified polystyrene. Journal of Biomaterials Applications, 26 (3), 327-347.
International Organization for Standardization. (2009). Biological evaluation of medical devices. Part 5: Tests for in vitro cytotoxicity (ISO Standard No. 10993‐5:2009). https://www.iso.org/standard/36406.html
Gilardino, M. S., Karunanayake, M., Al-Humsi, T., Izadpanah, A., Al-Ajmi, H., Marcoux, J., Atkinson, J. & Farmer, J.P. (2015). A comparison and cost analysis of cranioplasty techniques: autologous bone versus custom computer-generated implants. The Journal of Craniofacial Surgery. 26 (1), 113-117.
Harris, D. A., Fong, A. J., Buchanan, E. P., Monson, L., Khechoyan, D. & Lam, S. (2014). History of synthetic materials in alloplastic cranioplasty. Neurosurg Focus, 36 (4), E20.
Hou, Q., Grijpma, D. W. & Feijen, J. (2003). Porous polymeric structures for tissue engineering prepared by a coagulation, compression moulding and salt leaching technique. Biomaterials, 24 (11), 1937-1947.
Lampin, M., Warocquier-Clérout, Legris, C., Degrange, M. & Sigot-Luizard, M. F. (1997). Correlation between substratum roughness and wettability, cell adhesion, and cell migration. Journal of Biomedical Materials Research Part A, 36 (1), 99-108.
Law, K. Y. (2014). Definitions for Hydrophilicity, Hydrophobicity, and Superhydrophobicity: Getting the Basics Right. The Journal of Physical Chemistry Letters, 5 (4), 686-688.
Li, W., Kang, J., Yuan, Y., Xiao, F., Yao, H., Liu, S., Lu, J., Wang, Y., Wang, Z. & Ren, L. (2016). Preparation and characterization of PVA-PEEK/PVA-β-TCP bilayered hydrogels for articular cartilage tissue repair. Composites Science and Technology, 128(18), 58-64.
Lynnerup, N., Astrup, J. G. & Sejrsen, B. (2005) Thickness of the human cranial diploe in relation to age, sex and general body build. Head & Face Medicine, 20 (1), 1-13.
Olah, L., Filipczak, K., Jaegermann, Z. & Czigány, T. (2006). Synthesis, structural and mechanical properties of porous polymeric scaffolds for bone tissue regeneration based on neat poly(ε‐caprolactone) and its composites with calcium carbonate. Polymers for Advanced Technologies, 17 (11-12), 889-897.
Panayotov, I. V., Orti, V., Cuisinier, F. & Yachouh, J. (2016). Polyetheretherketone (PEEK) for medical applications. Journal of Materials Science: Materials in Medicine, 27 (7), 118.
Punchak, M., Chung, L. K., Lagman, C., Bui, T. T., Lazareff, J., Rezzadeh, K., Jarrahy, R. & Yang, I. (2017). Outcomes following polyetheretherketone (PEEK) cranioplasty: Systematic review and meta-analysis. Journal of Clinical Neuroscience, 41, 30-35.
Reignier, J. & Huneault, M. A. (2006). Preparation of interconnected poly(Ɛ-caprolactone) porous scaffolds by a combination of polymer and salt particulate leaching. Polymer, 47 (13), 4703-4717.
Rentsch, C., Rentsch, B., Heinemann, S., Bernhardt, R., Bischoff, B., Förster, Y., Scharnweber, D. & Rammelt, S. (2014). CM inspired coating of embroidered 3D scaffolds enhances calvaria bone regeneration. BioMed Research International, 2014, 1-15.
Reznik, M., Saeed, Y. & Shutter, L. (2016). Teaching NeuroImages: Severe vasospasm in traumatic brain injury. Neurology, 86 (12), 132-133.
Roozenbeek, B., Maas, A. I. & Menon, D. K. (2013). Changing patterns in the epidemiology of traumatic brain injury. Nature Reviews Neurology, 9 (4), 231-236.
Santos, F. S. F., Ferreira, V. P., Sá, M. D. & Fook, M. V. L. (2017). Modificação da superfície do poli (éter-éter-cetona). Matéria, 22 (4), e-11883.
Shah, A. M., Jung, H. & Skirboll, S. (2014). Materials used in cranioplasty: a history and analysis. Neurosurg Focus, 36 (4), E19.
Stichel, C. C. & Müller, H. W. (1998). Experimental strategies to promote axonal regeneration after traumatic central nervous system injury. Progress in Neurobiology, 56 (2), 119-148.
Stocchetti, N., Paternò, R., Citerio, G., Beretta, L. & Colombo, A. (2012). Traumatic brain injury in an aging population. Neurotrauma, 29(6), 1119-1125.
Tagliaferri, F., Compagnone, C., Korsic, M., Servadei, F. & Kraus, J. (2006). A systematic review of brain injury epidemiology in Europe. Acta Neurochirurgica, 148 (3), 255-268.
Teasdale, G. & Jennett, B. (1974). Assessment of coma and impaired consciousness: a practical scale. Lancet, 2 (7872), 81-84.
Unterberg, A.W., Stover, J., Kress, B. & Kiening, K.L. (2004). Edema and brain trauma. Neuroscience, 129 (4), 1019-1027.
Ventola, C. L. (2014). Medical Applications for 3D Printing: Current and Projected Uses. P T., 39 (10), 704–711.
Wong, V. S. & Langley, B. (2016). Epigenetic changes following traumatic brain injury and their implications for outcome, recovery and therapy. Neuroscience Letters, 625, 23-33.
Yin, H. M., Qian, J. & Zhang, J. (2016). Engineering Porous Poly(lactic acid) Scaffolds with High Mechanical Performance via a Solid State Extrusion/Porogen Leaching Approach. Polymers, 8 (6), 213.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Maria Dennise Medeiros Macedo; Claudio Orestes Britto Filho; Matheus Ferreira de Souza; Wladymyr Jefferson Bacalhau de Sousa; Thiago Caju Pedrosa; Ana Caroline Santana de Azevedo; Kleilton Oliveira Santos; Glauber Rodrigues Cerqueira de Cerqueira; Fernando Melo Gadelha; Marcus Vinicius Lia Fook
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.