Forecasting the Brazilian demand for biodiesel using artificial neural networks
DOI:
https://doi.org/10.33448/rsd-v10i5.13381Keywords:
Biodiesel; Brazil; Artificial neural networks; Seasonality; Demand forecast.Abstract
Biodiesel is a renewable fuel used as an alternative to totally or partially replace petroleum diesel. The mandatory percentage of this biofuel added to fossil diesel in Brazil has constantly been increasing. Predicting the amount of biodiesel that will be demanded in the future is essential to maintain the national surplus balance and assist in the sector decision-making. Artificial neural networks (ANNs) help forecast different types of demands. Therefore, this study uses artificial neural networks to forecast the Brazilian demand for biodiesel. The ANN proposed in this work encompassed data obtained from a non-parametric demand forecasting model based on time series. The non-parametric model considered the trends and seasonality of the data to forecast the demand for biodiesel. One hundred multilayer perceptron networks were modeled with error propagation for two scenarios of Brazilian biodiesel (use of 15% (B15) or 20% (B20) of biodiesel to diesel). All values of R2 greater than 0.99 for the simulated networks and RMSE <2% prove that the RNA model developed has high precision in predicting the demand for biodiesel. The best network for each scenario was determined by RMSE heuristic analysis. The best-simulated RNA results showed growth in biodiesel demand from 2019 to 2050 of 150.63% for B15. And 229.73% for B20. Both demand growth scenarios are justified by the gradual increase in the mandatory percentage of biodiesel to diesel. Thus, the growing results of biodiesel demand prove the country search for a non-toxic, biodegradable, and renewable fuel in its energy matrix.
References
Acheampong, A. O., & Boateng, E. B. (2019). Modelling carbon emission intensity: Application of artificial neural network. Journal of Cleaner Production, 225, 833-856. doi: 10.1016/j.jclepro.2019.03.352
ANP – Agência Nacional de Petróleo, Gás Natural e Biocombustível. (2020). Biodiesel. Retrieved July 10, 2020, from http://www.anp.gov.br/biocombustiveis/biodiesel
Betiku, E., Osunleke, A. S., Odude, V. O., Bamimore, A., Oladipo, B., Okeleye, A. A., & Ishola, N. B. (2021). Performance evaluation of adaptive neuro-fuzzy inference system, artificial neural network and response surface methodology in modeling biodiesel synthesis from palm kernel oil by transesterification. Biofuels, 12(3), 339-354. doi: 10.1080/17597269.2018.1472980
Brahimi, T., Alhebshi, F., Alnabilsi, H., Bensenouci, A., & Rahman, M. (2019). Prediction of Wind Speed Distribution Using Artificial Neural Network: The Case of Saudi Arabia. Procedia Computer Science, 163, 41-48. doi: 10.1016/j.procs.2019.12.084.
Carmo, B. B. T., Pontes, H. L. J., Albertin, M. R., Neto, J. F. B., & da Silva Dutra, N. G. (2009). Avaliação da demanda por biodiesel em função de um modelo de previsão de demanda por diesel. Revista Produção Online, 9(3),511–535.
Chidambaranathan, B., Gopinath, S., Aravindraj, R., Devaraj, A., Krishnan, S. G., & Jeevaananthan, J. K. S. (2020). The production of biodiesel from castor oil as a potential feedstock and its usage in compression ignition Engine: A comprehensive review. Materials Today: Proceedings, 33, 84-92. doi: 10.1016/j.matpr.2020.03.205
CNPE – Conselho Nacional de Política Energética. (2018). Resolução CNPE n° 16, de 29 de outubro de 2018. Retrieved July 10, 2020, from https://www.gov.br/mme/pt-br/assuntos/conselhos-e-comites/cnpe/resolucoes-do-cnpe/arquivos/2018/resolucao_16_cnpe_29-10-18.pdf
Đozić, D. J., & Urošević, B. D. G. (2019). Application of artificial neural networks for testing long-term energy policy targets. Energy, 174, 488-496. doi: 10.1016/j.energy.2019.02.191
Ebrahimabadi, A., Azimipour, M., & Bahreini, A. (2015). Prediction of roadheaders' performance using artificial neural network approaches (MLP and KOSFM). Journal of Rock Mechanics and Geotechnical Engineering, 7(5), 573-583. doi: 10.1016/j.jrmge.2015.06.008
Ekonomou, L. (2010). Greek long-term energy consumption prediction using artificial neural networks. Energy, 35(2), 512-517. doi: 10.1016/j.energy.2009.10.018
Farobie, O., Hasanah, N., & Matsumura, Y. (2015). Artificial neural network modeling to predict biodiesel production in supercritical methanol and ethanol using spiral reactor. Procedia environmental sciences, 28, 214-223. doi: 10.1016/j.proenv.2015.07.028
Gupta, N., & Nigam, S. (2020). Crude Oil Price Prediction using Articial Neural Network. Procedia Computer Science. 170, 642-647. doi:10.1016/j.procs.2020.03.136.
Jayalakshmi, T., & Santhakumaran, A. (2011). Statistical normalization and back propagation for classification. International Journal of Computer Theory and Engineering, 3(1), 1793-8201. Retrieved from http://www.ijcte.org/papers/288-L052.pdf
Karunathilake, S. L., & Nagahamulla, H. R. (2017, September). Artificial neural networks for daily electricity demand prediction of Sri Lanka. In 2017 Seventeenth International Conference on Advances in ICT for Emerging Regions (ICTer) (pp. 1-6). IEEE.
Katsatos, A. L., & Moustris, K. P. (2019). Application of Artificial Neuron Networks as energy consumption forecasting tool in the building of Regulatory Authority of Energy, Athens, Greece. Energy Procedia, 157, 851-861. doi: 10.1016/j.egypro.2018.11.251
Kochak, A., & Sharma, S. (2015). Demand forecasting using neural network for supply chain management. International journal of mechanical engineering and robotics research, 4(1), 96-104. doi: 10.18178/ijmerr.
Ling, Y., Yue, Q., Chai, C., Shan, Q., Hei, D., & Jia, W. (2020). Nuclear accident source term estimation using Kernel Principal Component Analysis, Particle Swarm Optimization, and Backpropagation Neural Networks. Annals of Nuclear Energy, 136, 107031. doi: 10.1016/j.anucene.2019.107031
Ministério de Minas e Energia, Empresa de Pesquisa Energética - MME/EPE. (2020). Plano Decenal de Expansão de Energia 2029. Retrieved July 03, 2020, from https://www.epe.gov.br/pt/publicacoes-dados-abertos/publicacoes/plano-decenal-de-expansao-de-energia-2029
Ministério do Meio Ambiente. (2020). Acordo de Paris. Retrieved July 10, 2020, from https://www.mma.gov.br/clima/convencao-das-nacoes-unidas/acordo-de-paris
Pereira, A. S., Shitsuka, D. M., Parreira, F. J., & Shitsuka, R. (2018). Metodologia da pesquisa científica. Santa Maria: UFSM, NTE.
Queiroz, A. A., & Cavalheiro, D. (2003). Método de previsão de demanda e detecção de sazonalidade para o planejamento da produção de indústrias de alimentos. Anais do Encontro Nacional de Engenharia de Produção, 23.
Rajakarunakaran, S., Venkumar, P., Devaraj, D., & Rao, K. S. P. (2008). Artificial neural network approach for fault detection in rotary system. Applied Soft Computing, 8(1), 740-748. doi: 10.1016/j.asoc.2007.06.002
Selvan, S. S., Pandian, P. S., Subathira, A., & Saravanan, S. (2018). Artificial neural network modeling-coupled genetic algorithm optimization of supercritical methanol transesterification of Aegle marmelos oil to biodiesel. Biofuels, 1-9. doi: 10.1080/17597269.2018.1542567
Singh, D., Sharma, D., Soni, S. L., Sharma, S., Sharma, P. K., & Jhalani, A. (2020). A review on feedstocks, production processes, and yield for different generations of biodiesel. Fuel, 262, 116553. doi:10.1016/j.fuel.2019.116553.
Sivamani, S., Selvakumar, S., Rajendran, K., & Muthusamy, S. (2019). Artificial neural network–genetic algorithm-based optimization of biodiesel production from Simarouba glauca. Biofuels, 10(3), 393-401. doi: 10.1080/17597269.2018.1432267
Thakur, A. K., Mer, K. K. S., & Kaviti, A. (2018). An artificial neural network approach to predict the performance and exhaust emissions of a gasoline engine using ethanol–gasoline blended fuels. Biofuels, 9(3), 379-393.doi: 10.1080/17597269.2016.1271630
Tubino, D. F. (2007). Planejamento e controle da produção: teoria e prática. São Paulo: Atlas.
Turp, S. M., Eren, B., & Ates, A. (2011). Prediction of adsorption efficiency for the removal of nickel (II) ions by zeolite using artificial neural network (ANN) approach. Fresenius Environmental Bulletin, 20(12), 3158-3165. Retrieved from https://d1wqtxts1xzle7.cloudfront.net/30548310/02-FEB-Prediction_of_adsorption_efficiency_for_the_removal_of.pdf?1360286886=&response-content-disposition=inline%3B+filename%3DPREDICTION_OF_ADSORPTION_EFFICIENCY_FOR.pdf&Expires=1618498882&Signature=LbccMwk3lLWMu4GcTriv6aoz~E1~LYk9uddxkeqQJBigkGd3YhuK46-n1WMxg1HQn0TBIv7VdCqwLr9ecbNEmHfYAfjmhYbSV2M5mwaOB1zP43UcFcDpGBYM2NeEEhgyvA~QFKfmmW2vOyut5xFIs~dibp~Eeq5u7kP1HqIcYOL5FpRg0~Sz5LB5aOO~WG-ejZTEQnbXN8pL0UsamqEvIKsz3QrQtKz49H1ykRmFGrMRRkY3U9h5EAnm~V3l1fdIfmc1TtKxKj5BakgLAeo2Qd013Ip65wDmHK6o6C4~VcX0UYd5pwk4MOSb4L0lSuu0sOV-BAJ0WrVvPKRqnvSumg__&Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA
União Brasileira do biodiesel e bioquerosene – Ubrabio. (2016). Energia para combater as mudanças climáticas. Biodiesel em foco; 9–17. Retrieved July 5, 2020, from https://issuu.com/ubrabio/docs/biodiesel_em_foco_-_ed_07-2016-web/17
Vastrad, C. (2013). Performance analysis of neural network models for oxazolines and oxazoles derivatives descriptor dataset. International Journal of Information Sciences and Techniques (IJIST), 3(6). doi: 10.5121/ijist.2013.3601
Zhang, G., Patuwo, B. E., & Hu, M. Y. (1998). Forecasting with artificial neural networks: The state of the art. International journal of forecasting, 14(1), 35-62.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Kaique Vitor Louzada Caires; George Simonelli
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.