Effect of heat stress on superovulatory response and biochemical parameters in superovulated Dorper sheep in a semi-arid tropical environment

Authors

DOI:

https://doi.org/10.33448/rsd-v10i4.13780

Keywords:

Thermal stress; Sheep; Embryo transfer.

Abstract

The aim of this study evaluated the influence of thermal stress on the superovulatory response and on the biochemical profile of superpervulated Dorper ewes in a semi-arid tropical environment. 13 Dorper sheep were used, which were submitted to estrus synchronization and superovulatory treatment, in two different periods [thermoneutral (TN) and thermal stress (ET)]. The sheep were inseminated by laparoscopy using frozen semen 42-43 hours after removal of the intravaginal device. Five days after artificial insemination, laparotomy was performed to assess the ovarian response and uterine lavage. Blood was collected to assess variations in serum concentrations of glucose, fructosamine, triglycerides, β-hydroxybutyrate (BHB), creatinine, urea, total protein, albumin, AST / TGO, GGT, Alkaline Phosphatase, Calcium, Phosphate and Magnesium. The thermoneutral (TN) and thermal stress (ET) periods had average temperatures of 22.01 ° C and 27.61 ° C, respectively, with a relative humidity of 31.9%. There is no difference in ovulatory response and recovery of structures between the TN and ET periods. Concentrations of serum metabolites varied between thermal periods and between assessment times. In conclusion, the thermal period does not affect the efficiency of the superovulation protocol in Dorper ewes reared in a semi-arid tropical environment, but causes changes in serum metabolites.

References

Bergstein‐Galan, T. G., Weiss, R. R., & Kozicki, L. E. (2019). Effect of semen and donor factors on multiple ovulation and embryo transfer (MOET) in sheep. Reproduction in Domestic Animals. 54, 401– 407.

Caldeira, R. M., Belo, A. T., Santos, C. C., Vazques, M. I., & Portugal, A. V. (2007). The effect of body condition score on blood metabolites and hormonal profiles in ewes. Small Rumin. Research. 68, 233-241.

Cognié, Y., Baril, G., Poulin, N., & Mermillod, P. (2003). Current status of embryos technologies in sheep and goat. Theriogenology 59, 171-188.

Contreras, P. A., Wittwer, F., & Böhmwald, H. (2000). Uso dos perfis metabólicos no monitoramento nutricional dos ovinos, p.75-88. In: González, F. H. D., Barcelos, J. O., Ospina, H., & Ribeiro, L. A. O. (Eds), Perfil Metabólico em Ruminantes: seu uso em nutrição e doenças nutricionais. Universidade Federal do Rio Grande do Sul.

Daly, J., Smith, H., McGrice, H. A., Kind, K. L., & van Wettere, W. H. E. J. (2020). Towards Improving the Outcomes of Assisted Reproductive Technologies of Cattle and Sheep, with Particular Focus on Recipient Management. Animals. 10(2): 293.

Dias E Silva, T. P., Costa Torreão, J. N., Torreão Marques, C. A., de Araújo, M. J., Bezerra, L. R., Kumar Dhanasekaran, D., & Sejian, V. (2016). Effect of multiple stress factors (thermal, nutritional and pregnancy type) on adaptive capability of native ewes under semi-arid environment. Journal of Thermal Biology. 59, 39-46.

Gibbons, A. E., & Cueto, M. (2011). Embryo Transfer in Sheep and Goats. A training manual. Bariloche Experimental Station National Institute for Agricultural Technology Argentina.

Gonzalez-Bulnes, A., Santiago-Moreno, J., Cocero, M. J., & Lopez-Sebastian, A. (2000). Effects of FSH commercial preparation and follicular status on follicular growth and superovulatory response in Spanish Merino ewes. Theriogenology. 54, 1055-1064.

Indu, S., Sejian, V., Kumar, D., Pareek, A., & Naqvi, S. M. K. (2015). Ideal proportion of roughage and concentrate for Malpura ewes to adapt and reproduce in a semi-arid tropical environment. Tropical Animal Health Production. 47(8), 1487-1495.

Joy, A., Dunshea, F. R., Leury, B. J., Clarke, I. J., DiGiacomo, K., & Chauhan, S. S. (2020). Resilience of Small Ruminants to Climate Change and Increased Environmental Temperature: A Review. Animals. 10(5), 867.

Kaneko, J. J., Harvey, J. W., & Bruss, M. L. (2008). Clinical Biochemestry of Domestic Animals. Academic Press.

Kadzere, C. T., Murphy, M. R., Silanikove, N., & Maltz, E. (2002). Heat stress in lactating dairy cows: a review. Livestock Production Science. 77, 59-91.

Kumar, B. V. S., Ajeet, K., & Meena, K. (2011). Effect of heat stress in tropical livestock and different strategies for its amelioration. Journal of Stress Physiology & Biochemistry. 7(1), 45- 54.

Ledda, S., & Gonzalez-Bulnes, A. (2018) ET-Technologies in Small Ruminants. In: Niemann H., Wrenzycki C. Animal Biotechnology.

Loiola Filho, J. B., Monte, A. P. O., Souza, T. T. S., Miranda, M. S., Magalhães, L. C., Barros, C. H. S. C., Silva, A. A. A., Santos, A. O., Guimarães, A. S. L., Costa, J. M. S., Cruz, R. B., Cordeiro, M. F., & Lopes Júnior, E. S. (2015). Efeito da redução da dose de pFSH na produção in vivo de embriões em ovelhas Dorper. Semina: Ciências Agrárias, 36(2), 4215-4224.

Luna-Palomera, C., Macías-Cruz, U., & Sánchez-Dávila, F. (2019). Superovulatory response and embryo quality in Katahdin ewes treated with FSH or FSH plus eCG during non-breeding season. Tropical Animal Health Production. 51, 1283–1288.

Macias-Cruz, U., López-Baca, M. A., Vicente, R., Mejíe, A., Ávarez, F. A., Correa-Calderón, A., Meza-Herrera, C. A., Mellado, M., Guerra-Liera, E. J., & Avendaño-Reyes, L. (2016). Effects of seasonal ambient heat stress (spring vs. summer) on physiological and metabolic variables in hair sheep located in an arid region. International Journal of Biometeorology. 60, 1279–1286.

Marai, I. F. M., Ayyat, M. S., & Abd El-Monem, U.M. (2001) Growth performance and reproductive traits at first parity of New Zealand White female rabbits as affected by heat stress and its alleviation under Egyptian conditions, Tropical Animal Health Production. 33, 457–462.

Marai, I. F. M., El-Darawny, A. A., Fadiel, A., & Abdel-Hafez, M. A. M. (2007). Physiological traits as affected by heat stress in sheep. Small Ruminant Research. 71, 1-12.

Marai, I. F. M., El-Darawany, A. A., Fadiel, A., Abdel-Hafez, M. A. M. (2008). Reproductive performance traits as affected by heat Stress and its alleviation in sheep: a review. Tropical and Subtropical Agroecosystems. 8, 209–234.

Naqvi, S. M. K., Maurya, V. P., Gulyani, R., Joshi, A., & Mittal, J. P. (2004). The Effect of thermal stress on superovulatory response and embryo production in Bharat Merino ewes. Small Ruminant Research. 55, 57-63.

Pereira, A. S., Shitsuka, D. M., Parreira, F. J., & Shitsuka, R. (2008). Metodologia da Pesquisa Cientifica. UFSM.

Rodrigues, N. E. B., Zangeronimo, M. G., & Fialho, E. T. (2010) Adaptações fisiológicas de suínos sob estresse térmico. Revista Eletrônica Nutritime. 7(2): 1197-1211.

Sejian, V., Maurya, V. P., & Naqvi, S. M. K. (2012). Effect of walking stress on growth, physiological adaptability and endocrine responses in Malpura ewes in a semi-arid tropical environment. International Journal of Biometeorology. 56, 243– 252.

Srikandakumar, A., Jonhson, E. H., & Mahgoub, O. (2003). Effect of heat stress on respiratory rate, rectal temperature and blood chemistry in Omani and Australian Merino sheep. Small Ruminant Research. 49, 193-198.

Thibier, M., & Guérin, B. (2000). Embryo transfer in small ruminants: the method of choice for health control in germplasm exchanges. Livestock Production Science. 62, 253-270.

Published

30/03/2021

How to Cite

BERNARDO, J. A. de S.; BERNARDO, E. M. F.; SILVA, R. A. J. A.; MERGULHÃO, F. C. da C.; COSTA, J. A. de S.; SILVA JÚNIOR, R. A. da; CARNEIRO, G. F.; SOARES, P. de C.; BATISTA, A. M. Effect of heat stress on superovulatory response and biochemical parameters in superovulated Dorper sheep in a semi-arid tropical environment. Research, Society and Development, [S. l.], v. 10, n. 4, p. e5710413780, 2021. DOI: 10.33448/rsd-v10i4.13780. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/13780. Acesso em: 20 apr. 2021.

Issue

Section

Agrarian and Biological Sciences