Highlights on the properties of the soda-lime-silicate glass residue that enable its use as filler in ultra-high performance concrete

Authors

DOI:

https://doi.org/10.33448/rsd-v10i3.13801

Keywords:

Glass Residue; Supplementary Cement Material; UHPC systems.

Abstract

The exponential advancement of cutting-edge technologies in the scope of civil construction, seeks to give cement-based materials the eco-efficient potential linked to mechanical performance that enables different applications. This work aims to evaluate the glass residue regarding the pozzolanic potential through ABNT NBR 5752:2014, as well as to verify whether through the characterization tests of x-ray fluorescence, x-ray diffraction and laser diffraction granulometry, if it is viable of application as supplementary cementitious material (filler), in ultra-high performance concrete. The glass residue submitted to the tests proposed in this study, was crushed in a jaw crusher, milled in a bench ball mill at 47 rpm, and was sieved in a 75 µm opening mesh (ABNT nº 200 mesh). For the test of pozzolanic activity, CP II F-40 class cement, normal sand, water from the public supply network, and superplasticizer additive were used for the mix with 25% of the residue replacing cement, while for the other characterization techniques, the glass residue was applied in its processed form (after sieving), dry or wet. The evaluated glass residue did not reach the minimum rate of 75% established by ABNT NBR 5752:2014, achieving only 45.72%, being classified as non-pozzolanic, which indicates its inert behavior in the presence of calcium hydroxide. The characterization tests confirmed, based on the specialized literature on ultra-high performance concrete, its viability as a filler when adopted as an alternative raw material for presenting chemical and mineralogical composition, in addition to granulometric distribution, very close to those used in studies that demonstrated satisfactory results when using the glass residue as an input.

Author Biography

João Victor da Cunha Oliveira, Universidade Federal de Campina Grande

Technologist in building construction at IFPB, and master's student in materials science and engineering at UFCG.

References

Associação Brasileira de Normas Técnicas. ABNT NBR 5752 – Materiais pozolânicos – Determinação do índice de desempenho com cimento Portland aos 28 dias. Rio de Janeiro, 2014.

Associação Brasileira de Normas Técnicas. ABNT NBR 7214 – Areia normal para ensaio de cimento – Especificação. Rio de Janeiro, 1982.

Bauer, L. A. F. (2019). Materiais de Construção – Vol. 2 (6. ed.). Rio de Janeiro: LTC.

Bouchikhi, A., Benzerzour, M., Abriak, N. E., Maherzi, W., & Mamindy-Pajany, Y. (2019). Study of the impact of waste glasses types on pozzolanic activity of cementitious matrix. Construction and Building Materials, 197, 626-640. https://doi.org/10.1016/j.conbuildmat.2018.11.180

Bradtmüller, H., Villas-Boas, M. C., Zanotto, E. D., & Eckert, H. (2020). Structural aspects of the glass-to-crystal transition in sodium-calcium silicate glasses. Journal of Non-Crystalline Solids, 535, 119844. https://doi.org/10.1016/j.jnoncrysol.2019.119844

Cormack, A. N., & Du, J. (2001). Molecular dynamics simulations of soda–lime–silicate glasses. Journal of Non-Crystalline Solids, 293-295, 283-289. https://doi.org/10.1016/S0022-3093(01)00831-6

Cunha Oliveira, J. V. (2020). State of the art of the development of sustainable concrete for applications in conventional structures. Research, Society and Development, 9 (11), 1-19. http://dx.doi.org/10.33448/rsd-v9i11.10272

Cunha Oliveira, J. V., Chagas, L. S. V. B., Meira, F. F. D. A., Carneiro, A. M. P., & Melo Neto, A. A. (2018). Avaliação do potencial pozolânico das cinzas do lodo de esgoto calcinado em argamassas de revestimento. In: 23° CBECIMat, Foz do Iguaçu, Paraná, Brasil, 2018. <https://bit.ly/3rFrtbW>.

Cunha Oliveira, J. V., Chagas, L. S. V. B., Meira, F. F. D. A., Carneiro, A. M. P., & Melo Neto, A. A. (2020). Study of the potential of adhesion to the substrate of masonry and tensile in the flexion in mortars of coating with gray of the sewage sludge. Materials Science Forum, 1012, 256-261. https://doi.org/10.4028/www.scientific.net/MSF.1012.256

Cunha Oliveira, J. V., Meira, F. F. D. A., & Lucena, K. F. M. (2021). Application of mineral admixtures and steel fibers in experimental compositions for reactive powders concrete. Research, Society and Development, 10 (1), 1-18. http://dx.doi.org/10.33448/rsd-v10i1.11910

Evangelista, N., Tenório, J. A. S., & Oliveira, J. R. (2012). Pozolanicidade dos resíduos industriais, lã de vidro e lã cerâmica. Revista Escola de Minas, 65 (1), 79-85. http://dx.doi.org/10.1590/S0370-44672012000100011

Garcia, E., Cabral Junior, M., Quarcioni, V. A., & Chotoli, F.F. (2015). Avaliação da atividade pozolânica dos resíduos de cerâmica vermelha produzidos nos principais polos ceramistas do Estado de S. Paulo. Cerâmica, 61 (358) 251-258. http://dx.doi.org/10.1590/0366-69132015613581847

Greaves, G. N., Fontaine, A., Lagarde, P., Raoux, D., & Gurman, S. J. (1981). Local structure of silicate glasses. Nature, 293 (22), 611-616. https://doi.org/10.1038/293611a0

Jiang, Y., Ling, T. C., Mo, K. H., & Shi, C. (2019). A critical review of waste glass powder – Multiple roles of utilization in cement-based materials and construction products. Journal of Environmental Management, 242, 440-449. https://doi.org/10.1016/j.jenvman.2019.04.098

Jiao, Y., Zhang, Y., Guo, M., Zhang, L., Ning, H., & Liu, S. (2020). Mechanical and fracture properties of ultra-high performance concrete (UHPC) containing waste glass sand as partial replacement material. Journal of Cleaner Production, 277, 123501. https://doi.org/10.1016/j.jclepro.2020.123501

L. Rodier, & H. Savastano Jr. (2018). Use of glass powder residue for the elaboration of eco-efficient cementitious materials. Journal of Cleaner Production, 184, 333-341. https://doi.org/10.1016/j.jclepro.2018.02.269

Lee, H., Hanif, A., Usman, M., Sim, J., & Oh, H. (2018). Performance evaluation of concrete incorporating glass powder and glass sludge wastes as supplementary cementing material. Journal of Cleaner Production, 170, 683-693. https://doi.org/10.1016/j.jclepro.2017.09.133

Mosaberpanah, M. A., Eren, O., & Tarassoly, A. R. (2019). The effect of nano-silica and waste glass powder on mechanical, rheological, and shrinkage properties of UHPC using response surface methodology. Journal of Materials Research and Technology, 8 (1), 804-811. https://doi.org/10.1016/j.jmrt.2018.06.011

Patel, D., Tiwari, R. P., Shrivastava, R., & Yadav, R. K. (2019). Effective utilization of waste glass powder as the substitution of cement in making paste and mortar. Construction and Building Materials, 199, 406-415. https://doi.org/10.1016/j.conbuildmat.2018.12.017

Pezeshkian, M., Delnavaz, A., & Delnavaz, M. (2019). Development of UHPC mixtures using natural zeolite and glass sand as replacements of silica fume and quartz sand. European Journal of Environmental and Civil Engineering, 1-16. https://doi.org/10.1080/19648189.2019.1610074

Ramanathan, S., Croly, M., & Suraneni, P. (2020). Comparison of the effects that supplementary cementitious materials replacement levels have on cementitious paste properties. Cement and Concrete Composites, 112, 103678. https://doi.org/10.1016/j.cemconcomp.2020.103678

Shelby, J. E. (2005). Introduction to Glass Science and Technology (2. ed.). Cambridge: The Royal Society of Chemistry.

Soliman, N. A., & Tagnit-Hamou, A. (2016). Development of ultra-high-performance concrete using glass powder – Towards ecofriendly concrete. Construction and Building Materials, 125, 600-612. https://doi.org/10.1016/j.conbuildmat.2016.08.073

Soliman, N. A., & Tagnit-Hamou, A. (2017a). Using glass sand as an alternative for quartz sand in UHPC. Construction and Building Materials, 145, 243-252. https://doi.org/10.1016/j.conbuildmat.2017.03.187

Soliman, N. A., & Tagnit-Hamou, A. (2017b). Partial substitution of silica fume with fine glass powder in UHPC: Filling the micro gap. Construction and Building Materials, 139, 374-383. https://doi.org/10.1016/j.conbuildmat.2017.02.084

Vaitkevičius, V., Šerelis, E., & Hilbig, H. (2014). The effect of glass powder on the microstructure of ultra high performance concrete. Construction and Building Materials, 68, 102-109. https://doi.org/10.1016/j.conbuildmat.2014.05.101

Vogel, W. (1994). Glass Chemistry (2. ed.). Berlin: Springer.

Wilson, W., Soliman, N. A., Sorelli, L., & Tagnit-Hamou, A. (2019). Micro-chemo-mechanical features of ultra-high performance glass concrete (UHPGC). Theoretical and Applied Fracture Mechanics, 104, 102373. https://doi.org/10.1016/j.tafmec.2019.102373

Yu, R., Spiesz, P., & Brouwers, H. J. H. (2015). Development of an eco-friendly Ultra-High Performance Concrete (UHPC) with efficient cement and mineral admixtures uses. Cement and Concrete Composites, 55, 383-394. https://doi.org/10.1016/j.cemconcomp.2014.09.024

Yuritsyn, N. S. (2015). Nucleation of crystals in sodium-calcium-silicate glasses of the metasilicate section. Glass Physics and Chemistry, 41 (1), 112-115. https://doi.org/10.1134/S1087659615010253

Downloads

Published

27/03/2021

How to Cite

OLIVEIRA, J. V. da C.; MEIRA, F. F. D. de A.; LUCENA, K. F. M. de. Highlights on the properties of the soda-lime-silicate glass residue that enable its use as filler in ultra-high performance concrete. Research, Society and Development, [S. l.], v. 10, n. 3, p. e59310313801, 2021. DOI: 10.33448/rsd-v10i3.13801. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/13801. Acesso em: 13 apr. 2021.

Issue

Section

Engineerings