Apical extrusion of debris using hypochlorite and chlorhexidine gel as auxiliary substances in endodontic instrumentation

Authors

DOI:

https://doi.org/10.33448/rsd-v10i4.13967

Keywords:

Root canal therapy; Dental Leakage; Root canal irrigants.

Abstract

Aim: This study evaluated the amount of extruded debris after canal preparation using three root canal irrigating substances. Methodology: Thirty human extracted single-rooted lower premolars were randomly assigned into 3 groups (n = 10) according to the chemical substance used for irrigation. G1: 2.5% sodium hypochlorite; G2: 2% chlorhexidine gel; and G3: 0.9% saline solution. The canals were instrumented using Reciproc Blue file (VDW, Munich, Germany). Apically extruded debris was collected into a pre-weighed Eppendorf tube filled with agar gel. Extruded debris were calculated by subtracting the tooth-free apparatus weight from the post preparation weight value. The data were analyzed using the ANOVA test at a 5% significance level. Results: No statistically significant differences were noted between the groups. However, G3 had the largest extrusion weight, and G2 produced less debris when compared to the other groups (p > .05). Conclusion: Within the limitations of this in vitro study, our data suggest that all chemical substances tested caused debris extrusion, although no statistically significant differences were found between the three substances.

References

Arias-Moliz, M. T., Ferrer-Luque, C. M., Espigares-García, M., & Baca, P. (2009). Enterococcus faecalis biofilms eradication by root canal irrigants. Journal of Endodontics, 35(5), 711-714.

Barbosa-Ribeiro, M., Arruda-Vasconcelos, R., Fabretti, F.L., Silva, E.J.N.L., De-Deus, G., Gomes, B.P.F.A. (2018). Evaluation of apically extruded debris using positive and negative pressure irrigation systems in association with different irrigants. Braz Dent J, 29(2), 184-8.

Berutti, E., Chiandussi, G., Paolino, D. S., Scotti, N., Cantatore, G., Castellucci, A., & Pasqualini, D. (2011). Effect of canal length and curvature on working length alteration with WaveOne reciprocating files. Journal of endodontics, 37(12), 1687-1690.

Dal Bello, Y., Mezzalira, G. I., Jaguszewski, L. A., Hoffmann, I. P., Menchik, V. H. S., Cecchin, D., & Souza, M. A. (2019). Effectiveness of calcium and sodium hypochlorite in association with reciprocating instrumentation on decontamination of root canals infected with Enterococcus faecalis. Australian Endodontic Journal, 45(1), 92-97.

De-Deus, G., Neves, A., Silva, E. J., Mendonça, T. A., Lourenço, C., Calixto, C., & Lima, E. J. M. (2015). Apically extruded dentin debris by reciprocating single-file and multi-file rotary system. Clinical oral investigations, 19(2), 357-361.

De-Deus, G., Cardoso, M. L., Belladonna, F. G., Cavalcante, D. M., Simões-Carvalho, M., Souza, E. M., ... & Silva, E. J. N. L. (2019). Performance of reciproc blue R25 instruments in shaping the canal space without glide path. Journal of endodontics, 45(2), 194-198.

Ferraz, C. C., Gomes, B. P., Zaia, A. A., Teixeira, F. B., & Souza-Filho, F. J. (2007). Comparative study of the antimicrobial efficacy of chlorhexidine gel, chlorhexidine solution and sodium hypochlorite as endodontic irrigants. Brazilian dental journal, 18(4), 294-298.

Ferraz, C. C. R., de Almeida Gomes, B. P. F., Zaia, A. A., Teixeira, F. B., & de Souza-Filho, F. J. (2001). In vitro assessment of the antimicrobial action and the mechanical ability of chlorhexidine gel as an endodontic irrigant. Journal of Endodontics, 27(7), 452-455.

Gomes, B. P., Vianna, M. E., Zaia, A. A., Almeida, J. F. A., Souza-Filho, F. J., & Ferraz, C. C. (2013). Chlorhexidine in endodontics. Brazilian dental journal, 24(2), 89-102.

Haapasalo, M., Shen, Y., Wang, Z., & Gao, Y. (2014). Irrigation in endodontics. British dental journal, 216(6), 299-303.

Hinrichs, R. E., Walker III, W. A., & Schindler, W. G. (1998). A comparison of amounts of apically extruded debris using handpiece-driven nickel-titanium instrument systems. Journal of endodontics, 24(2), 102-106.

Keskin, C., Sariyilmaz, E., & Sariyilmaz, O. (2017). Effect of solvents on apically extruded debris and irrigant during root canal retreatment using reciprocating instruments. International endodontic journal, 50(11), 1084-1088.

Keskin, C., & Sarıyılmaz, E. (2018). Apically extruded debris and irrigants during root canal filling material removal using Reciproc Blue, WaveOne Gold, R-Endo and ProTaper Next systems. Journal of dental research, dental clinics, dental prospects, 12(4), 272.

Koçak, S., Koçak, M. M., Sağlam, B. C., Türker, S. A., Sağsen, B., & Er, Ö. (2013). Apical extrusion of debris using self-adjusting file, reciprocating single-file, and 2 rotary instrumentation systems. Journal of endodontics, 39(10), 1278-1280.

Kuştarcı, A., Akpınar, K. E., Suemer, Z. E. Y. N. E. P., Er, K., & Bek, B. (2008). Apical extrusion of intracanal bacteria following use of various instrumentation techniques. International endodontic journal, 41(12), 1066-1071.

Lambrianidis, T., Tosounidou, E., & Tzoanopoulou, M. (2001). The effect of maintaining apical patency on periapical extrusion. Journal of Endodontics, 27(11), 696-698.

Leonardi, L. E., Atlas, D. M., & Raiden, G. (2007). Apical extrusion of debris by manual and mechanical instrumentation. Brazilian dental journal, 18(1), 16-19.

Lu, Y., Wang, R., Zhang, L., Li, H. L., Zheng, Q. H., Zhou, X. D., & Huang, D. M. (2013). Apically extruded debris and irrigant with two N i‐T i systems and hand files when removing root fillings: a laboratory study. International endodontic journal, 46(12), 1125-1130.

Mendonça de Moura, J. D., da Silveira Bueno, C. E., Fontana, C. E., & Pelegrine, R. A. (2019). Extrusion of debris from curved root canals instrumented up to different working lengths using different reciprocating systems. Journal of endodontics, 45(7), 930-934.

Miot, H. A. (2011). Sample size in clinical and experimental trials. J Vasc Bras, 10(4), 275-8.

Robert, G. H., Liewehr, F. R., Buxton, T. B., & McPherson III, J. C. (2005). Apical diffusion of calcium hydroxide in an in vitro model. Journal of endodontics, 31(1), 57-60.

Ruiz-Hubard, E. E., Gutmann, J. L., & Wagner, M. J. (1987). A quantitative assessment of canal debris forced periapically during root canal instrumentation using two different techniques. Journal of Endodontics, 13(12), 554-558.

Schneider, S. W. (1971). A comparison of canal preparations in straight and curved root canals. Oral surgery, Oral medicine, Oral pathology, 32(2), 271-275

Siqueira Jr, J. F., & Rôças, I. N. (2008). Clinical implications and microbiology of bacterial persistence after treatment procedures. Journal of endodontics, 34(11), 1291-1301.

Seltzer, S., & Naidorf, I. J. (1985). Flare-ups in endodontics: I. Etiological factors. Journal of Endodontics, 11(11), 472-478.

Siqueira Jr, J. F. (2003). Microbial causes of endodontic flare‐ups. International Endodontic Journal, 36(7), 453-463.

Tanalp, J., & Güngör, T. (2014). Apical extrusion of debris: a literature review of an inherent occurrence during root canal treatment. International endodontic journal, 47(3), 211-221.

Toyoğlu, M., & Altunbaş, D. (2017). Influence of different kinematics on apical extrusion of irrigant and debris during canal preparation using K3XF instruments. Journal of endodontics, 43(9), 1565-1568.

Uslu, G., Özyürek, T., Yılmaz, K., Gündoğar, M., & Plotino, G. (2018). Apically extruded debris during root canal instrumentation with Reciproc blue, HyFlex EDM, and XP-endo shaper nickel-titanium files. Journal of endodontics, 44(5), 856-859.

Uzunoglu, E., & Görduysus, M. (2014). Apical extrusion of debris and irrigant using novel preparation systems. J Contemp Dent Pract,15(4),423-7.

VandeVisse, J. E., & Brilliant, J. D. (1975). Effect of irrigation on the production of extruded material at the root apex during instrumentation. Journal of Endodontics, 1(7), 243-246.

Vertucci, F. J. (1984). Root canal anatomy of the human permanent teeth. Oral surgery, oral medicine, oral pathology, 58(5), 589-599.

Young, G. R., Parashos, P., & Messer, H. H. (2007). The principles of techniques for cleaning root canals. Australian Dental Journal, 52, S52-S63.

Vianna, M. E., Gomes, B. P., Berber, V. B., Zaia, A. A., Ferraz, C. C. R., & de Souza-Filho, F. J. (2004). In vitro evaluation of the antimicrobial activity of chlorhexidine and sodium hypochlorite. Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontology, 97(1), 79-84.

Downloads

Published

04/04/2021

How to Cite

KADI, E. M.; LIMOEIRO, A. G. da S. .; BRONZATO, J. D.; RADAIC, S.; GARCIA, K.; NERI, L.; NASCIMENTO, W. M.; SOARES, A. de J.; FROZONI, M. Apical extrusion of debris using hypochlorite and chlorhexidine gel as auxiliary substances in endodontic instrumentation. Research, Society and Development, [S. l.], v. 10, n. 4, p. e16610413967, 2021. DOI: 10.33448/rsd-v10i4.13967. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/13967. Acesso em: 7 jan. 2025.

Issue

Section

Health Sciences