Analysis of the degradation of Reinforced Plastic in Fiberglass when exposed to sea water and sand

Authors

DOI:

https://doi.org/10.33448/rsd-v10i4.13981

Keywords:

Composite; Morphological analysis; GFRP.

Abstract

Composites are conjugated combinations of two or more materials, which comprehend a matrix and one or more types of reinforcements. Its applicability spans several industrial sectors, mainly in the aerospace and transport sectors. Its use has grown in recent years, but its usefulness depends on several factors such as the way of manufacture, type of resin, applied reinforcement and the environment to be exposed. In addition, this type of material suffers degradation in its useful life, so it is necessary to know its behavior, as they are potential waste generators, bringing concerns to the environment. From this, the work had, as main objective, the manufacture of a composite material that was exposed to two different environments, sea water and sand, for a period designated from moisture saturation. The specimens were submitted to density, humidity and calcination tests. After moisture saturation, the specimens were superficially evaluated using scanning electron microscopy (SEM), making it possible to visualize the wear suffered during the exposure of the material. Then, it was identified that in both environments there was a superficial wear, with more intensity, mainly, in the exposed to the sea water. Therefore, it was possible to conclude that this type of composite, once exposed to these conditions, highlights the need to add a new layer of material in order to protect its structure, increasing its useful life and mitigating the generation of waste in the environment.

Author Biographies

Francisco Alisson de Queiroz, Federal Institute of Education, Science and Technology of RN

Graduating in energy engineering

Gabriel Ramon Brito Silva, Federal Institute of Education, Science and Technology of RN

Graduating in Energy Engineering

References

Ashik, K. P., Sharma, R. S., & Gupthaa, V. L. J. (2018). Investigation of moisture absorption and mechanical properties of natural /glass fiber reinforced polymer hybrid composites. Materials Today: Proceedings 5, 3000–3007. https://doi.org/10.1016/j.matpr.2018.01.099.

ASTM – American society for testing materials. ASTM D3171: Standard test methods for constituent content of composite materials. USA, 2015.

ASTM - American society for testing and materials. ASTM D5229M: Standard Test method for moisture absorption properties and equilibrium conditioning of polymer matrix composite materials. USA, 2020.

ASTM - American Society for Testing Materials. ASTM D792: Standard test methods for density and specific gravity of plastic. USA, 2020.

Carvalho, A. C. (2015). Fabricação e caracterização de compósitos à base de resina epóxi e fibras de bananeira. Dissertação de mestrado, Universidade Federal de São João Del-Rei, Minas Gerais,Brasil.

Cunha, R. A. D. (2015). Influência da absorção de umidade no comportamento mecânico nos compósitos poliméricos híbridos kevlar/vidro quando imerso em água do mar e petróleo. Dissertação de mestrado, Universidade Federal do Rio grande do Norte, Natal, Brasil.

Cunha, R. A. D., Santos, J. K. D., Felipe, R. C. T. S., & Felipe, R. N. B. (2017). Comportamento mecânico do compósito PRFV quando imerso em água do mar por tempo prolongado. HOLOS, 4, 78-87. 10.15628/holos.2017.5320.

Domingos, Y. S, Felipe, R. C. T. S., Felipe, R. N. B., Fernandes, G. J. T. (2019). Evaluation of the environmental aging of the glass fiber-reinforced polymer composite when in contact with the effluent of a treatment plant. Journal of Composite Materials, 54(11), 1385–1402. 10.1177/0021998319878766.

Felipe, R. C. T. S., Felipe, R. N. B. , Batista, A. C. M. C. , Aquino, E. M. F. (2019). Influence of environmental aging in two polymer-reinforced composites using different hybridization methods: glass/kevlar fiber hybrid strands and in the weft and warp alternating kevlar and glass fiber strands. Composites Part B, v.174, Article 106994. 10.1016/j.compositesb.2019.106994.

Galli, C. A. (2016). Caracterização das propriedades mecânicas de compósitos de matriz de epóxi com fibras de carbono unidirecionais. Dissertação de conclusão de curso, Universidade Federal do Rio de Janeiro, Brasil.

Gu, H. (2009). Dynamic mechanical analysis of the seawater treated glass/polyester composites. Materials and Design, 30, 2774-2777. 10.1016/j.matdes.2008.09.029.

Guzman, V. A., & Brondsted, P. (2014). Effects of moisture on glass fiber-reinforced polymer composites. Department of Wind Energy, Technical University of Denmark, Roskilde 4000. https://doi.org/10.1177/0021998314527330.

Hull, D., Clyne, T. W. (1996). An introduction to composite materials. (2a ed.), University press.

Lima, N. L. P., Felipe, R. N. B., & Felipe, R. C. T. S. (2020). Cement mortars with use of polyethylene tereftalate aggregate: a review on its sustainability. Research, Society and Development, 9(8). 10.33448/rsd-v9i8.5640. e513985640.

Macêdo, M. C., Neto. (2017). Obtenção e caracterização de um compósito de matriz polimérica com carga de palha de aço. Dissertação de doutorado, Universidade Federal do Rio Grande do Norte, Natal, Brasil.

Milani, A. S., Crawford, B., & Heinrick (2017). Degradation of fibreglass composites under natural weathering conditions. MOJ Polymer Science. 1. 10.15406/mojps.2017.01.00004.

Monteiro, S. N., Lopes, F. P. D., Ferreira, A. S., & Nascimento, D. C. O. (2009). Natural fiber polymer matrix composites: Cheaper, tougher and environmentally friendly. JOM, 61, 17-22. 10.1007/s11837-009-0004-z.

Oliveira, M. L. (2015). Obtenção e caracterização de um compósito de matriz polimérica com carga de resíduos vegetal proveniente do sabugo de milho. Pós-Graduação em Engenharia de Mecânica, Universidade Federal do Rio grande do Norte, Natal, Brasil.

Pandiano, A., Vairavan, M., Thangaiah, W. J. J., Uthayaumar, M. (2014). Mechanical propertier of basalt fibre reinforced polymer matrix composites. Hindawi Publishing Corporation. Journal of Composites. 10.1166/jamr.2014.1185.

Ribeiro, L.M., Ladchumananandasivam, R., Galvão, A. O., & Belarmino, D. D. (2013). Flamabilidade e retardância de chama do compósito: poliéster insaturado reforçado com fibra de abacaxi (PALF). Holos, 1, 115-126. 10.15628/holos.2013.932.

Sanjay, M. R., & Yogesha, B. (2016). Studies on Mechanical Properties of Jute/E-Glass Fiber Reinforced Epoxy Hybrid Composites. Journal of Minerals and Materials Characterization and Engineering, v.4 (1) 55–62. 10.4236/jmmce.2016.41002.

Santos, J. K. D., Cunha, R. D., Amorim, W. F., Júnior, Felipe, R. C. T. S., Braga, J. L., Neto, & Freire, R. C. S., Júnior (2020) The variation in low speed impact strength on glass fiber/Kevlar composite hybrids. Journal of Composite Materials, 54 (21) 3009–3019. 10.1177/0021998320906205.

Senthilkumar, K., Saba, N., Rajini, N., Chandrasekar, M., Jawaid, M., Siengchin, S., & Alothman, O. Y. (2018). Mechanical properties evaluation of sisal fibre reinforced polymer composites: A review. Construction and Building Materials, 174. Doi:10.1016/j.conbuildmat.2018.04.143.

Silva, C. J. (2014). Absorção de Água em Materiais Compósitos de Fibra Vegetal: Modelagem e Simulação via CFX . Dissertação de mestrado, Universidade Federal de Campina Grande, Paraíba, Brasil.

Silva, V. B., Feitosa, Y. M., Maradini, S.M., Almeida, S. M., & Oliveira, M. P. (2019). Análise de absorção de água em compósitos de óleo de mamona reforçado com bagaço de cana de açúcar. Conferencia: XIII Congresso Brasileiro de Engenharia Química em Iniciação Científica. p. 1190-1196, 10.5151/cobecic2019-EMN68.

Souza, N. S., Felipe, R. C. T. S., Felipe, R. N. B., & Lima, N. L. P. (2020). Industrial solid waste: Composite with glass fiber reinforced plastic waste. Research, Society and Development, 9(9). 10.33448/rsd-v9i9.7136. e520997136.

Published

06/04/2021

How to Cite

QUEIROZ, F. A. de; SILVA, G. R. B.; BARROS, L. de H. V.; FELIPE, R. C. T. dos S. Analysis of the degradation of Reinforced Plastic in Fiberglass when exposed to sea water and sand. Research, Society and Development, [S. l.], v. 10, n. 4, p. e19510413981, 2021. DOI: 10.33448/rsd-v10i4.13981. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/13981. Acesso em: 14 nov. 2024.

Issue

Section

Engineerings