Profile of volatile organic compounds in musts and cachaças produced by selected Saccharomyces cerevisiae yeast strains




Alembic Cachaças; Autóctones strains; Chemical composition.


Alembic cachaça is a beverage of great cultural and economic importance in Brazil. However, its quality is variable and difficult to control, mainly because the fermentation process occurs in open vats and is conducted by many different microorganisms which produce a great variability of chemical compounds. The use of selected yeast strains as starters has been considered an excellent alternative to the traditionally used spontaneous fermentation, since it allows the production of cachaças less subject to variation and in general, of higher quality. Still, the use of yeast strains isolated from producing areas (autóctones) would contribute for the production of beverages which carry the identity of the geographic region. In this study, we evaluated the volatile fraction of organic compounds in musts and cachaças produced by three autóctones Saccharomyces cerevisiae yeast strains. Our aim was to correlate the chemical profile of the samples with the strains to evaluate the viability of using such starters for large-scale cachaça production. More than 200 compounds belonging to seven different chemical groups were identified using solid-phase microextraction coupled to gas chromatography-mass spectrometry. The number of compounds identified in the cachaças was superior to those found in musts and those that most influenced for the differentiation of the samples were acetic and octanoic acid for musts, and ethyl decanoate and ethyl dodecanoate esters for cachaças. Multivariate analysis showed that the distillation process, as well as the fermentation microenvironment had the greatest influence on the chemical composition.


Adams, R. P. (2007). Identification of essential oil components by gas chromatography/mass spectroscopy, (4th ed.), Allured Publishing Corporation, Carol Stream.

Amorim, J. C., Schwan, R. F. & Duarte, W. F. (2016). Sugar cane spirit (cachaça): Effects of mixed inoculum of yeasts on the sensory and chemical characteristics. Food Research International. 85, 76-83. doi: 10.1016/j.foodres.2016.04.014.

Badotti, F., Belloch, C., Rosa, C. A., Barrio, E. & Querol, A. (2010). Physiological and molecular characterisation of Saccharomyces cerevisiae cachaça strains isolated from different geographic regions in Brazil. World Journal of Microbiology and Biotechnology, 26(4), 579–587. doi:10.1007/s11274-009-0206-0.

Badotti, F., Gomes, F. C. O. & Rosa, C. (2012). Brazilian Cachaça: Fermentation and Production. In Hui, Y. H. & Özgül Evranuz, E. (eds), Handbook of Plant Based Fermented Foods and Beverages (pp. 639-648). CRC Press: Florida, USA.

Barbosa, E. A., Souza, M. T., Diniz, R. H. S., Godoy-Santos, F., Faria-Oliveira, F., Correa, L. F. M. & Brandão, L. R. (2016). Quality improvement and geographical indication of cachaça (Brazilian spirit) by using locally selected yeast strains. Journal of Applied Microbiology, 121, 1038-1051. doi:10.1111/jam.13216.

Borges, G. B. V., Gomes, F. C. O., Badotti, F., Silva, A. L. D. & Machado, A. M. R. (2014). Selected Saccharomyces cerevisiae yeast strains and accurate separation of distillate fractions reduce the ethyl carbamate levels in alembic cachaças. Food Control, 37, 380-384. doi: 10.1016/j.foodcont.2013.09.013.

Bortoletto, A. M. & Alcarde, A. R. (2015). Assessment of chemical quality of Brazilian sugar cane spirits and cachaças. Food Control, 54, 1-6. doi: 10.1016/j.foodcont.2015.01.030.

Cardeal, Z. L., De Souza, P. P., Gomes da Silva, M. D. R. & Marriott, P. J. (2008). Comprehensive two-dimensional gas chromatography for fingerprint pattern recognition in cachaça production. Talanta, 74, 793-799. doi:10.1016/j.talanta.2007.07.021.

Cardoso, M. G. (2020). Compostos Secundários da Cachaça. In: Cardoso, M. G. Produção de aguardente de cana. 4. ed. Lavras: UFLA, 445p.

Charry-Parra, G., De Jesus-Echevarria, M. & Perez, F. J. (2011). Beer Volatile Analysis: Optimization of HS/SPME Coupled to GC/MS/FID. Journal of Food Science, 76, C205-211. doi:10.1111/j.1750-3841.2010.01979.x.

De Souza, M. D. C. A., Vásquez, P., Del Mastro, N. L., Acree, T. E. & Lavin, E. H. (2006). Characterization of Cachaça and Rum Aroma. Journal of Agricultural and Food Chemistry. 54(2), 485-488. doi:10.1021/jf0511190.

De Souza, P. P., Cardeal, Z. L., Augusti, R., Morrison, P. & Marriot, P. J. (2009). Determination of volatile compounds in Brazilian distilled cachaça a by using comprehensive two-dimensional gas chromatography and effects of production pathways. Journal of Chromatography A, 121, 62881-2890. doi: 10.1016/j.chroma.2008.10.061.

D’Silva, A. F., Badotti, F., Pinheiro, C. S. R., Gonçalves, C. M., Hughes, F. M., Rosa, C. A., Góes Neto, A. & Uetanabaro, A. P. T. (2019). Diversity of Saccharomyces cerevisiae strains isolated of the spontaneous fermentation of cachaça from northeastern Brazil. Brazilian Journal of Development, 5(11), 27448-27461. doi:10.34117/bjdv5n11-348.

Duarte, W. F., Amorim, J. C. & Schwan, R. F. (2013). The effects of co-culturing non-Saccharomyces yeasts with S. cerevisiae on the sugar cane spirit (cachaca) fermentation process. Antonie van Leeuwenhoek, 103, 175–194. Doi: 10.1007/s10482-012-9798-8.

Faria-Oliveira, F., Diniz, R. H. S., Godoy-Santos, F., Piló, F. B., Mezadri, H., Castro, I. M. & Brandão, R. L. (2015). The role of yeast and lactic acid bacteria in the production of fermented beverages in South America. In Eissa, A. H. A. (ed), Food Production and Industry (pp.107-135). INTECH Open Access Publisher: Rijeka, Croácia.

Gonçalves, R. C. F., Teodoro, M. M. G., Machado, A. M. R., Gomes, F. C. O., Badotti, F. & Cardoso, M. G. (2016). Compostos voláteis em cachaças de alambique produzidas por leveduras selecionadas e por fermentação espontânea. Magistra, 28(3/4), 285-293.

Gomes, F. C. O., Silva, C. L.C., Marini, M. M., Oliveira, E.S. & Rosa, C. A. (2007). Use of selected indigenous Saccharomyces cerevisiae strains for the production of the traditional cachaça in Brazil. Journal of Applied Microbiology, 103, 2438-2447. doi:10.1111/j.1365-2672.2007.03486.x.

Khio, S. W., Cheong, M. W., Zhou, W. B., Curran, P. & Yu, B. (2012). Characterization of the Volatility of Flavor Compounds in Alcoholic Beverages through Headspace Solid-Phase Microextration (HS-SPME) and Mathematical Modeling. Journal of Food Science. 77(1), C61-C70. doi:10.1111/j.1750-3841.2011.02474.x.

MINITAB INC. (2017) Minitab statistical software. Version 18.1 for Windows. State College, Pennsylvania: Minitab Inc.

Paredes, R. S., Vieira, I. P. V., de Mello, V. M., Vilela, L. F., Schwan, R. F. & Eleutherio, E. C. A. (2018). Identification of three robust and efficient Saccharomyces cerevisiae strains isolated from Brazilian's cachaça distilleries. Biotechnology Research and Innovation, 2(1), 22-29. doi: 10.1016/j.biori.2018.07.001.

Pérez-González, M., Gallardo-Chacón, J. J., Valencia-Flores, D. & Ferragut, V. (2015). Optimization of a Headspace SPME GC–MS Methodology for the Analysis of Processed Almond Beverages. Food Analytical Methods. 8(3), 612-623. doi: 10.1007/s12161-014-9935-2.

Portugal, C. B., Alcarde, A. R., Bortoletto, A. M. & de Silva, A. P. (2016). The role of spontaneous fermentation for the production of cachaça: a study of case. European Food Research and Technology, 242(9), 1587-1597. doi: 10.1007/s00217-016-2659-3.

Prado-Jaramilo, N., Estarrón-Espinosa, M., Escalona-Buendía, H., Cosío-Ramirez, R. & Martin-del-Campo, S. T. (2015). Volatile compounds generation during different stages of the Tequila production process. A preliminary study. LWT - Food Science and Technology. 61(2), 471-483. doi: 10.1016/j.lwt.2014.11.042.

Ruiz-Delgado, A. F. J., Romero-Gonzalez, R., López-Ruiz, R. & Frenich, A. G. (2016). Headspace solid-phase microextraction coupled to gas chromatography-tandem mass spectrometry for the determination of haloanisoles in sparkling (cava and cider) and non-sparkling (wine) alcoholic beverages. Food Additives & Contaminants Part A. 33(10), 1535-1544. doi: 10.1080/19440049.2016.1229870.

Santiago, W. D., Cardoso, M. G., Santiago, J. A., Teixeira, M. L., Barbosa, R. B., Zacaroni, L. M. & Nelson, D. L. (2016). Physicochemical profile and determination of volatile compounds in cachaça stored in new oak (Quercus sp.), amburana (Amburana cearensis), jatoba (Hymenaeae carbouril), balsam (Myroxylon peruiferum) and peroba (Paratecoma peroba) casks by SPME-GC–MS. Journal of the Institute of Brewing. 122, 624–634. doi: 10.1002/jib.372.

Serafim, F. A. T. & Franco, D. W. (2015). Chemical traceability of industrial and natural yeasts used in the production of Brazilian sugarcane spirits. Journal of Food Composition and Analysis, 38, 98-105. doi: 10.1016/j.jfca.2014.11.001.

Serafim, F. A. T. & Lanças, F. M. (2019). Sugarcane Spirits (Cachaça) Quality Assurance and Traceability: an Analytical Perspective. In Grumezescu, A. M. & Holban, A. M. (eds), Production and Management of beverages: The Science of Beverages (pp. 335-359). Elsevier: Amsterdã, Holanda. doi: 10.1016/B978-0-12-815260-7.00011-0.

Silva, E. A. S. & Pawliszyn, J. (2012). Optimization of Fiber Coating Structure Enables Direct Immersion Solid Phase Microextraction and High-Throughput Determination of Complex Samples. Analytical Chemistry, 84(16), 6933-6938. doi: 10.1021/ac301305u.

Thibaud, F., Shinkaruk, S. & Darriet, P. (2019). Quantitation, Organoleptic Contribution, and Potencial Origin of Diethyl Acetals Formed from Various Aldehydes in Cognac. Journal of Agricultural and Food Chemistry, 67(9), 2617–2625. doi: 10.1021/acs.jafc.9b01084

Voss, H. G. J, Mendes Júnior, J. J. A., Farinelli, M. E. & Stevan Jr, S. L. (2019). A Prototype to Detect the Alcohol Content of Beers Based on an Electronic Nose. Sensors. 19, 2646-2659. doi: 10.3390/s19112646.




How to Cite

SILVEIRA, A. L.; MACHADO, A. M. de R.; GOMES, F. de C. O. .; GARCIA, C. F.; BADOTTI, F. Profile of volatile organic compounds in musts and cachaças produced by selected Saccharomyces cerevisiae yeast strains. Research, Society and Development, [S. l.], v. 10, n. 4, p. e23410414009, 2021. DOI: 10.33448/rsd-v10i4.14009. Disponível em: Acesso em: 15 may. 2021.



Agrarian and Biological Sciences