Pharmacological activities and their relationship with the oxidative stress of Morinda Citrifolia L. (Rubiaceae): an integrative review




Morinda citrifolia; Oxidative stress; Flavonoid; Iridoide; Anthraquinone.


The present work made an analysis of pharmacological studies of Morinda citrifolia L. and the role of oxidative stress. The research was carried out on the Capes and PubMed Journals Portal. Initially, titles, abstracts were read and those that had no relation to the topic and in duplicate were excluded. After this process, the works were read in full and the information was extracted. A total of 517 articles were found, after reading the titles and abstracts, 39 articles were selected and at the end 28 were included. Regarding the activities evaluated, 9 articles evaluated the antioxidant and anti-inflammatory activity; 5 antitumor and cytotoxicity; 3 antimicrobials; 3 antileishmania; and 8 articles that researched about different activities. According to the studies analyzed, this species has anti-inflammatory, hypotensive potential, prevention of pancreatitis, hepatoprotective and cytoprotective, and such activities seem to be related to the presence of metabolites with antioxidant activity. The antitumor activity may be related to the oxidizing activity of anthraquinones. The role of oxidative stress in the hypoglycemic and anti-obesity effects of the species still needs to be further investigated. In summary, most of the biological activities attributed to M. citrifolia can be related to the presence of compounds with antioxidant potential.


Ahmed, A., Charles, P. D., Cholan, R., Rússia, M., Surya, R. & Jailance, L. (2015). Antibacterial efficacy and effect of Morinda citrifolia L. mixed with irreversible hydrocolloid for dental impressions: A randomized controlled trial. Journal of Pharmacy and Bio Allied Sciences, 7(Supl 2), S597-S599. doi: 10.4103/0975-7406.163562.

Algenstaedt, P., Stumpenhagen, A. & Westendorf, J. (2018). The Effect of Morinda citrifolia L. Fruit Juice on the Blood Sugar Level and Other Serum Parameters in Patients with Diabetes Type 2. Evidence-Based Complementary and Alternative Medicine, 2018, 1-10. doi: 10.1155/2018/3565427.

Almeida-Souza, F., Cardoso, F. O., Souza, B. V. C., Valle, T. Z. V., Sá, J. C., Oliveira, I. S. S., . . . Calabrese, K. S. (2016a). Morinda citrifolia Linn. Reduces Parasite Load and Modulates Cytokines and Extracellular Matrix Proteins in C57BL/6 Mice Infected with Leishmania (Leishmania) amazonensis. PLoS Neglected Tropical Diseases, 10(8), e0004900. doi: 10.1371/journal.pntd.0004900

Almeida-Souza, F., Taniwaki, N. N., Amaral, A. C. F., Souza, C. S. F., Calebrese, K. S. & Abreu-Silva, A. L. (2016b). Ultrastructural Changes and Death of Leishmania infantum Promastigotes Induced by Morinda citrifolia Linn. Fruit (Noni) Juice Treatment. Evidence - Based Complementary and Alternative Medicine, 2016, 1-9. doi: 10.1155/2016/5063540.

Almeida-Souza, F., Oliveira, A. E. R., Silva, A. L. A. & Calabrese, K. S. (2018). In vitro activity of Morinda citrifolia Linn. fruit juice against the axenic amastigote form of Leishmania amazonensis and its hydrogen peroxide induction capacity in BALB/c peritoneal macrophages. BMC Research Notes, 11(492), 1-7. doi: 10.1016/j.actatropica.2019.01.021.

Al-Otaibi, J. S., Spittle, P. T., & El Gogary, T. M. (2017). Interaction of anthraquinone anti-cancer drugs with DNA:Experimental and computational quantum chemical study. Journal of Molecular Structure, 1127, 751-60. doi: 10.1016/j.molstruc.2016.08.007

Ambade, A., & Mandrekar, P. (2012). Oxidative stress and inflammation: essential partners in alcoholic liver disease. International Journal of Hepatology, 2012(9), 1-9. doi: 10.1155/2012/853175.

Anitha T., & Mohandass, S. (2006). Anti-oxidant activity of Morinda citrifolia on lymphoma-bearing mice. Ancient Science of Life, 26(1&2), 85-88.

Armoni M., Kritz N., Harel C., Bar-Yoseph, F., Chen, H., Quon, M. J. & Karnieli, E. (2003). Peroxisome proliferador-activatou receptor-γ reprime a atividade promotor glut4 em adipócitos primários, e rosiglitazone alivia esse efeito. Journal of Biological Chemistry, 278(33), 30614-30623. doi: 10.1074/jbc. M304654200.

Ayala, A., Muñoz, M.F., & Argüelles, S. (2014). Lipid Peroxidation: production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2- nonenal. Oxidative Medicine and Cellular Longevity, 2014(360438), 1-31. doi: 10.1155/2014/360438.

Barbosa, A. F., Costa, I. M., Zucolotto, S. M. & Giordani, R. B. (2017). Morinda citrifolia: fatos e riscos sobre o uso do noni. Revista Fitos, 11(2), 119-249. doi 10.5935/2446-4775.20170027

Barboza, J. M. (2018). Potencial anti-inflamatório e perfil antioxidante do eugenol: uma revisão (Trabalho de Conclusão de Curso). Facudade de Farmácia, Universidade Federal da Paraíba. 36p.

Barreto, R., Albuquerque-Júnior, R., Araújo, A., Almeida, J. R. G. S., Santos, M. R. V., Barreto, A. S., . . . Quintans-Júnior, L. J. (2014). A Systematic Review of the Wound-Healing Effects of Monoterpenes and Iridoid Derivatives. Molecules, 19(1), 846–862. doi:10.3390/molecules19010846.

Batista, J. A., Magalhães, D. A., Sousa, S. G., Ferreira, J. S., Pereira, C. M. C., Lima, J. V. N., . . . Barbosa, A. L. R. (2019). Polysaccharides derived from Morinda citrifolia Linn reduce inflammatory markers during experimental colitis. Journal Ethnopharmacology, 248(112303). doi: 10.1016/j.jep.2019.112303.

Beg M, Sharma V, Akhtar N, Gupta A, Mohd J. (2011). Role of antioxidants in hypertension. Journal, Indian Academy of Clinical Medicine, 12(2), 122-127. Recuperado de

Biswas, S. K., & Lopes de Faria, J. B. (2007). Which comes first: renal inflammation or oxidative stress in spontaneously hypertensive rats? Free Radical Research, 41(2), 216–224. doi:10.1080/10715760601059672.

Brandão, D. L. N., Martins, M. T., Silva, A. O., & Almeida, A. D. (2020). Anti-malarial activity and toxicity of Aspidosperma nitidum Benth: a plant used in traditional medicine in the Brazilian Amazon. Research, Society and Development, 9(10), e5059108817. doi: 10.33448/rsd-v9i10.8817.

Brasil. (2006). Política Nacional de Plantas Medicinais e Fitoterápicos (Série B. Textos Básicos de Saúde). Brasília: Ministério da Saúde.

Brasil. (2015). Programa Nacional de Plantas Medicinais e Fitoterápicos (1 ed., 2. Impres.). Brasília: Ministério da Saúde.

Brown, J. E., Khodr, H., Hider, R. C., & Rice-Evans, C. (1998). Structural dependence of flavonoid interactions with Cu2+ ions: implications for their antioxidant properties. Biochem. J., 330, 1173-1178. doi: 10.1042/bj3301173.

Buettner, G. R. (1993). The pecking order of free radicals and antioxidants: lipid peroxidation, alpha-tocopherol, and ascorbate. Arch. Biochem. Biophys., 300, 535-43. doi: 10.1006/abbi.1993.1074.

Cao, G.; Sofic, E.; Prior, & R. L. (1997). Antioxidant and prooxidant behavior of flavonoids: structure-activity relationships. Free Rad. Biol. Med., 22, 749-760. doi: 10.1016/s0891-5849(96)00351-6

Chen, J., Shi, X., Chen, Y., Liang, H., Cheng, C. & He, Q. (2018). Neuroprotective effects of chloroform and aqueous fractions of noni juice against t-Butyl hydroperoxide-induced oxidative damage in SH-SY5Y cells. Food & Nutrition, 62, 1-11. doi: 10.29219/fnr.v62.1605.

Choi, I., Park, Y., Choi, H., & Lee, E. H. (2006). Anti‐adipogenic activity of rutin in 3T3‐L1 cells and mice fed with high‐fat diet. BioFactors, 26(4), 273-281. doi: 10.1002/biof.5520260405.

Chong, C. L. G., Hussan, F., & Othman, F. (2019). Hepatoprotective Effects of Morinda citrifolia Leaf Extract on Ovariectomized Rats Fed with Thermoxidized Palm Oil Diet: Evidence at Histological and Ultrastructural Level. Oxidative Medicine and Cellular Longevity, 2019, 1-10. doi: 10.1155/2019/9714302.

Degáspari, C. H., & Waszczynskyj, N. (2004). Propriedades antioxidantes de compostos fenólicos. Visão Acadêmica, 5(1), 33-40.

Divia, A. R., Nair, M. G., Varughese, J. M., & Kurien, S. A. (2018). Comparative evaluation of Morinda citrifolia, green tea polyphenols, and Triphala with 5% sodium hypochlorite as an endodontic irrigant against Enterococcus faecalis: An in vitro study. Dental Research Journal, 15(2), 117-122. Recuperado de

Dussossoy, E., Brat, P., Bony, E., Boudard, F., Poucheret, P., Mertz, C., Giaimis, J., & Michel, A. (2011). Characterization, anti-oxidative and anti-inflammatory effects of Costa Rican noni juice (Morinda citrifolia L.). J. Etnopharmacol., 133(1), 108-15. doi: 10.1016/j.jep.2010.08.063.

Dussossoy, E., Bichon, F., Bony, E., Portet, K., Brat, P., Vaillant, F., Michel, A. & Poucheret, P. (2016). Pulmonary anti-inflammatory effects and spasmolytic properties of Costa Rican noni juice (Morinda citrifolia L.). J. Ethnopharmacol., 192, 264-272. doi: 10.1016/j.jep.2016.07.038.

Feuerer, M., Herrero, L., Cipolletta, D., Naaz, A., Wong, J., Nayer, A., . . . Mathis, D. (2009) Lean, but not obese, fat is enriched for a unique population of regulatory T cells that affect metabolic parameters. Nat. Med., 15, 930-939. doi: 10.1038/nm.2002.

Florentino, I. F., Silva, D. P.B., Silva, D. M., Cardoso, C. S., Moreira, A. L. E., Borges, C. L., . . . Costa, E. A. (2017). Potential anti-inflammatory effect of LQFM-021 in carrageenan-induced inflammation: The role of nitric oxide. Nitric Oxide, 69, 35 – 44. doi: 10.1016/j.niox.2017.04.006.

Formica, J. V., & Regelson, W. (1995). Review of the biology of quercetin and related bioflavonoids. Food Chem. Toxicol., 33, 1061– 80.

Gadicherla, V., Challa, S. R., Rao, M. V. B., Kunda, P. K. & Prudhvi, R. (2019). Morinda citrifolia (Noni) fruit protects the exocrine pancreatic dysfunction against L-arginine induced acute pancreatitis in rats. Pharmacognosy Magazine, 15(64), 328-364.

Ganeshpurkar, A., & Saluja, A. K. (2017). The Pharmacological Potential of Rutin. Saudi Pharm. J., 25, 149–164. doi: 10.1016/j.jsps.2016.04.025.

García, N., Zazueta, C., & Aguilera-Aguirre, L. (2017). Oxidative Stress and Inflammation in Cardiovascular Disease. Oxidative Medicine and Cellular Longevity, 2017, 1-2. doi:

Gottlieb, M. G. V., Morassutti, A. L., & Cruz, I. B. M. (2011). Transição epidemiológica, estresse oxidativo e doenças crônicas não transmissíveis sob uma perspectiva evolutiva. Scientia Medica, 21(2), 69-80.

Hanasaki, Y., Ogawa, S., & Fukui, S. (1994). The correlation between active oxygens scavenging and antioxidative effects of flavonoids. Free Rad. Biol. Med., 16, 845-850. doi: 10.1016/0891-5849(94)90202-x.

Horsfall A. U., Olabiyi O., Aiyegbusi A., Noronha C. C., & Okanlawon, A. O. (2008). Morinda citrifolia fruit juice augments insulin action in Sprague-Dawley rats with experimentally induced diabetes. Nigeriano Quarterly Journal of Hospital Medicine, 18(3), 162-165. doi: 10.4314/nqjhm.v18i3.45020.

Hsu, C. -L., Wu, C. -H., Huang, S. -L., & Yen, G. -C. (2009). Phenolic compounds rutin and o-coumaric acid ameliorate obesity induced by high-fat diet in rats. J. Agr. Food Chem., 57, 425-431. doi: 10.1021/jf802715t

Hussain, S. R., Cillard, J., & Cillard, P. (1987). Hydroxyl radical scavenging activity of flavonoids. Phytochemistry, 26, 2489- 2491. doi: 10.1016/S0031-9422(00)83860-1.

Hussain, T., Tan, B., Yin, Y., Blachier, F., Tossou, M. C, & Rahu, N. (2016). Oxidative Stress and Inflammation: What Polyphenols Can Do for Us? Oxidative medicine and cellular longevity, 2016, 1-9. doi: 10.1155/2016/7432797.

Ishibashi, Y., Matsui, T., Isami, F., Abe, Y., Sakaguchi, T., Higashimoto, Y., & Yamagishi, S. I. (2017). N-butanol extracts of Morinda citrifolia suppress advanced glycation end products (AGE)-induced inflammatory actions in endothelial cells through its anti-oxidative properties. BMC Complementary and Alternative Medicine, 17(1), 1-6. doi: 10.1186/s12906-017-1641-3.

Jaeschke, H., Wang, Y., & Esani, N. A. (1996). Reactive oxygen species activate the transcription factor NF-κB in the liver by induction of lipid peroxidation (abstract). Hepatology, 24, 238A.

Jambocus, N. G. S., Ismail, A., Khatib, A., Mahomoodally, F., Saari, N., Mumtaz, M. W., & Hamid, A. A. (2017). Morinda citrifolia L. leaf extract prevent weight gain in Sprague-Dawley rats fed a high fat diet. Food Nutr. Res., 61(1), 1-13. doi: 10.1080/16546628.2017.1338919.

Kamiya, K., Tanaka, Y., Endang, H., Umar, M., & Satake, T. (2004). Chemical constituents of Morinda citrifolia fruits inhibit copperinduced low-density lipoprotein oxidation. J. Agric. Food Chem., 52(19), 5843–5848. doi: 10.1021/jf040114k.

Kamiya, K., Tanaka, Y., Endang, H., Umar, M., & Satake, T. (2005). New anthraquinone and iridoid from the fruits of Morinda citrifolia. Chem. Pharm. Bull., 53(12), 1597–1599. doi: 10.1248/cpb.53.1597.

Kim, Y., Cho, I., Jeong, M., Jeong, S., Nah, S., Cho, Y. -S., Kim, S. -H., Go, A.-R., Kim, S.-E. & Kang, -S.-S. (2011). Therapeutic Effect of Total Ginseng Saponin on Skin Wound Healing. J. Ginseng Res., 35, 360–367. doi: 10.5142/jgr.2011.35.3.360.

Korkina, L. G., & Afanas’ev, I. B. (1997). Antioxidant and chelating properties of flavonoids. Adv Pharmacol., 38, 151-63. doi: 10.1016/s1054-3589(08)60983-7.

Lawson, C., & Wolf, S. (2009). ICAM-1 signaling in endothelial cells. Pharmacol. Rep., 61, 22–32. doi: 10.1016/S1734-1140(09)70004-0.

Lee, S. Y., Park, S. L., Hwang, J. T., Yi, S. H., Nam, Y. D., & Lim, S. I. (2012). Antidiabetic Effect of Morinda citrifolia (Noni) Fermented by Cheonggukjang in KK-A(y) Diabetic Mice. Evidence-based Complementary and Alternative Medicine; 2012, 1-8. doi: 10.1155/2012/163280.163280.

Lee, S. E., Hwang, H. J., Há, J. S., Jeong, H. S., & Kim, J. H. (2003). Screening of medicinal plant extracts for antioxidant activity. Life Sci., 73, 167-179. doi: 10.1016/s0024-3205(03)00259-5

Letterson, P., Fromenty, B., & Terris, B. (1996). Acute and chronic hepatic steatosis lead to in vivo lipid peroxidation in mice. Journal of Hepatology, 24(2), 200–208. doi: 10.1016/s0168-8278(96)80030-4.

Li, Z., Wu, C., Ding, X., Li, W., Xue, L. (2020). Toll signaling promotes JNK-dependent apoptosis in Drosophila. Cell Div., 15,7. Doi:

Lim, S. –L., Mustapha, N. M., Goh, Y. –M, Bakar, N. A. A., & Mohamed, S. (2016). Metastasized lung cancer suppression by Morinda citrifolia (Noni) leaf compared to Erlotinib via anti-inflammatory, endogenous antioxidant responses and apoptotic gene activation. Molecular and Cellular Biochemistry, 416, 85-97. doi: 10.1007 / s11010-016-2698-x.

Ma, D. L., Chen, M., Su, C. X., & West, B. J. (2013). In vivo antioxidant activity of deacetylasperulosidic acid in noni. J. Anal Methods Chem., 2013, 804504. doi:

Matalka, I. I., Mhaidat, N. M., & Fatlawi, L. A. (2013). Antioxidant activity of simvastatin prevents L-arginine-induced L-Arginine induced acute pancreatitis in rats. Int. J. Physiol Pathophysiol Pharmacol., 5(2), 102-108. Recuperado de

Matsui, T., Nakamura, N., Ojima, A., Nishino, Y., & Yamagishi, S.I. (2016). Sulforaphane reduces advanced glycation end products (AGEs)-induced inflammation in endothelial cells and rat aorta. Nutr. Metab. Cardiovasc. Dis., 26(9), 797–807. doi: 10.1016/j.numecd.2016.04.008.

Matsui, T., Nishino, Y., Takeuchi, M., & Yamagishi, S. (2011). Vildagliptin blocks vascular injury in thoracic aorta of diabetic rats by suppressing advanced glycation end product-receptor axis. Pharmacol Res., 63(5), 383–388. doi: 10.1016/j.phrs.2011.02.003.

Mayer, A.D., McMahon, M. J., Bowen, M., & Cooper, E. H. (1984). C reactive protein: an aid to assessment and monitoring of acute pancreatitis. J. Clin. Pathol., 37(2), 207-211. doi: 10.1136/jcp.37.2.207.

McCord, J. M. (1995). Superoxide radical: controversies, contradictions, and paradoxes. Proc. Exp. Biol. Med., 209(2), 112-117. doi: 10.3181/00379727-209-43885c.

Mhatre, B., & Marar, T. (2016). Protective effect of Morinda citrifolia L. (fruit extract) on methotrexate-induced toxicities-hematological and biochemical studies. Cogent biology, 2(1), 1-7. doi:

Nagashima K., Lopez C., Donovan D., Ngai, C., Fontanez, N., Bensadoun, A., . . . Ginsberg, H. N. (2005). Effects of the PPARgamma agonist pioglitazone on lipoprotein metabolism in patients with type 2 diabetes mellitus. Journal of Clinical Investigation., 115(5), 1323-1332. doi: 10.1172/JCI23219.

Narasimhan, K. K. S., Jayakumar, D., Velusamy, P., Srinivasan, A., Mohan, T., Ravi, D. B., . . . Periandavan, K. (2019). Morinda citrifolia and Its Active Principle Scopoletin Mitigate Protein Aggregation and Neuronal Apoptosis through Augmenting the DJ-1/Nrf2/ARE Signaling Pathway. Oxidative Medicine and Cellular Longevity, 2019, 1-13. doi:10.1155/2019/2761041.

Nayak, B. S., Marshall, J. R., Isitor, G., & Adogwa A. (2011). Hypoglycemic and Hepatoprotective Activity of Fermented Fruit Juice of Morinda citrifolia (Noni) in Diabetic Rats. Evidence-Based Complementary and Alternative Medicine, 2011, 1-5. doi:10.1155/2011/875293.

Nerurkar, P. V., Nishioka, A., Eck, P. O., Johns, L.M., Volper, E., & Nerurkar V. R. (2012). Regulation of glucose metabolism via hepatic forkhead transcription factor 1 (FoxO1) by Morinda citrifolia (noni) in high-fat diet-induced obese mice. British Journal of Nutrition, 108(2), 218-228. doi: 10.1017/S0007114511005563.

Nickavar, B., Kamalinejad, M., & Izadpanah, H. (2007). In vitro free radical scavenging activity of five Salvia species. Pak J. Pharm. Sci., 20(4), 291-294.

Nowak, D., Gos´Lin´Ski, M., Wesołowska, A., Berenda, K., & Popławski, C. (2019). Effects of Acute Consumption of Noni and Chokeberry Juices vs. Energy Drinks on Blood Pressure, Heart Rate, and Blood Glucose in Young Adults. Evidence-Based Complementary and Alternative Medicine, 2019(4), 1-9. doi: 10.1155/2019/6076751.

Nugroho, A.E., Malik, A., & Pramono, S. (2013). Total phenolic and flavonoid contents, and in vitro antihypertension activity of purified extract of Indonesian cashew leaves (Anacardium occidentale L.). Int. Food Res. J., 20, 299-305.

Organização Mundial de Saúde (OMS). (1978). Atenção primária à saúde: relatório da Conferência Internacional sobre Atenção Primária à Saúde.

Panche, A. N., Diwan, A. D., & Chandra, S. R. (2016). Flavonoids: An Overview. J. Nutr. Sci., 5, e47. doi: 10.1017/jns.2016.41.

Patlevič, P., Vašková, J., Švorc, P., Vaško, L., & Švorcd, P. (2016). Reactive oxygen species and antioxidant defense in human gastrointestinal diseases. Integrative medicine research, 5(4), 250-258. doi: 10.1016/j.imr.2016.07.004.

Pereira, A. S., Shitsuka, D. M., Pereira, F. J., & Shitsuka, R. (2018). Metodologia da pesquisa científica. Santa Maria: UFSM, NTE. Recuperado de

Pietta, P.G. (2000). Flavonoids as antioxidants. Journal of Natural Products, 63, 1035–1042. doi: 10.1021/np9904509.

Podar, R., Kulkarni, G. P., Dadu, S. S., Singh, S., & Singh, S. H. (2015). In vivo antimicrobial efficacy of 6% Morinda citrifolia, Azadirachta indica, and 3% sodium hypochlorite as root canal irrigants. European Journal of Dentistry, 9(4), 529-534. doi: 10.4103/1305-7456.172615.

Potterat, O., & Hamburger, M. (2007). Morinda citrifolia (Noni) fruit- phytochemistry, pharmacology, safety. Planta Médica, 73(3),1991-99. doi: 10.1055/s-2007-967115.

Rajivgandhi, G., Saravanan, K., Ramachandran G., Li, J.-L, Yin, L., Quero, F., . . . Li, W. –J. (2020). Enhanced anti-cancer activity of chitosan loaded Morinda citrifolia essential oil against A549 human lung cancer cells. International Journal of Biological Macromolecules, 164, 4010-4021. doi:10.1016/j.ijbiomac.2020.08.169.

Rao, U. S. M., Subramanian, S. M. (2009). Biochemical evaluation of antihyperglycemic and antioxidative effects of Morinda citrifolia fruit extract studied in streptozotocin-induced diabetic rats. Medicinal Chemistry Research, 18(6), 433–446. doi: 10.1007/s00044-008-9140-1.

Reuter, S., Gupta, S. C., Chaturvedi, M. M., & Aggarwal, B. B. (2010). Oxidative stress, inflammation, and cancer: How are they linked? Free Radical Biology and Medicine, 49(11), 1603-1616. doi: 10.1016/j.freeradbiomed.2010.09.006.

Robak, J., & Gryglewski, R. J. (1988). Flavonoids are scavengers of superoxide anions. Biochem. Pharmacol., 37, 83-88. doi: 10.1016/0006-2952(88)90169-4.

Sarmento, R. M. (2016). Efeitos citoprotetor e citotóxico de Annona glabra (Annonaceae). (Dissertação de Mestrado). Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Pará, Belém, PA, Brasil.

Sattar F. A., Ahmed F., Ahmed N., Sattar S. A., Malghani M. A. K., & Choudhary M. I. (2012). A double-blind, randomized, clinical trial on the antileishmanial activity of a Morinda citrifolia (Noni) stem extract and its major constituents. Natural Product Communications, 7(2), 195-196.

Schattauer, S. S., Bedini, A., Summers, F., Reilly-Treat, A., Andrews, M. M., Land, B. B., & Chavkin, C. (2019). Reactive oxygen species (ROS) generation is stimulated by κ opioid receptor activation through phosphorylated c-Jun N-terminal kinase and inhibited by p38 mitogen-activated protein kinase (MAPK) activation. J. Biol. Chem., 45, 16884–16896. doi: 10.1074/jbc.RA119.009592.

Shadidi, F., Janitha, P. K., & Wanasundara, P. D. (1992). Phenolic antioxidants. Crit. Rev. Food Sci., 32, 67-103. doi: 10.1080/10408399209527581.

Shalan, N. A. A. M., Mustapha, N. M., & Mohamed, S. (2016). Morinda citrifolia leaf enhanced performance by improving angiogenesis, mitochondrial biogenesis, antioxidant, anti-inflammatory & stress responses. Food Chemistry, 212, 443-452. doi: 10.1016/j.foodchem.2016.05.179.

Sharma, K., Pachauri, S. D., Khandelwal, K. Ahmad, H. Arya, A., Biala, P., Agrawal, S., Pandey, R.R., Srivastava, A., Srivastav, A., Saxena, J.K., Dwivedi, A. K. (2016). Anticancer Effects of Extracts from the Fruit of Morinda Citrifolia (Noni) in Breast Cancer Cell Lines. Drug Res, 66(3), 141-147. doi: 10.1055/s-0035-1555804.

Sittie A. A., Lemmich E., Olsen C. E., Hviid, L., Kharazmi, A., Nkrumash, F. K., & Christensen, S. B. (1999). Structure-activity studies: in vitro antileishmanial and antimalarial activities of anthraquinones from Morinda lucida. Planta Medica, 65(3), 259-261. doi: 10.1055/s-2006-960473.

Sousa, S. G., Oliveira, L. A., Magalhães D. A., Brito, T. V., Batista, J. A., Pereira, C. M. C., Costa, M.S., Mazulo-Neto, J.C.R., Filgueras, M.C., Vasconcelos, D.F.P., Silva, D.A., Barros, F.C.N., Sombra.V.G., Freitas, A.L.P., Paula, R.C.M., Feitosa, J.P.A., Barbosa, A. L. R. B. (2018). Chemical structure and anti-inflammatory effect of polysaccharide extracted from Morinda citrifolia Linn (Noni). Carbohydrate Polymers, 197, 515-523. doi: 10.1016/j.carbpol.2018.06.042.

Su, X., Liu, X., Wang, S., Li, B., Pan, T., Liu, D., Wang, F., Diao, Y., & Li, K. (2017). Wound-healing promoting effect of total tannins from Entada Phaseoloides (L.) Merr. in rats. Burns. 2017, 43(4), 830–838. doi: 10.1016/j.burns.2016.10.010.

Sui, X., Kong, N., Ye, L., Han, W., Zhou, J., Zhang, Q., He, C., & Pan, H. (2014). p38 and JNK MAPK pathways control the balance of apoptosis and autophagy in response to chemotherapeutic agents. Cancer Lett., 344, 174–179. doi: 10.1016/j.canlet.2013.11.019.

Sukamporn, P., Rojanapanthu, P., Silva, G., Zhang, X., Gritsanapan, W., & Baek, S. J. (2016). Damnacanthal and its nanoformulation exhibit anti-cancer activity via cyclin D1 down-regulation. Life Sciences, 152, 60-66. doi: 10.1016/j.lfs.2016.03.038.

Suksamrarn, A., Kumpun, S., Kirtikara, K., Yingyongnarongkul, B., & Suksamrarn, S. (2002). Iridoids with Anti-Inflammatory Activity from Vitex peduncularis. Planta Medica, 68(1), 72–73. doi:10.1055/s-2002-20048.

Takenaka, K., Yamagishi, S., Matsui, T., Nakamura, K., & Imaizumi, T. (2006). Role of advanced glycation end products (AGEs) in thrombogenic abnormalities in diabetes. Curr. Neurovasc. Res., 3(1), 73–77. doi: 10.2174/156720206775541804.

Torel, J., Cillard, J., & Cillard, P. (1986). Antioxidant activity of flavonoids and reactivity with peroxy radical. Phytochemistry, 25, 383-5. doi: 10.1016/S0031-9422(00)85485-0.

Trieu Ly, H., Nguyen, M. T. P., Nguyen, T. K. O., Bui, T. P. Q., Ke, X., & Le, V. M. (2020). Phytochemical analysis and wound-healing activity of noni (Morinda citrifolia) leaf extract. Journal of Herbs, Spices & Medicinal Plants, 26(4), 379-393. doi: 10.1080/10496475.2020.1748159.

Ursini, F., Maiorino, M., Morazzoni, P., Roveri, A., & Pifferi, G. (1994). A novel antioxidant flavonoid (IdB 1031) affecting molecular mechanisms of cellular activation. Free Rad. Biol. Med., 16, 547-53. doi: 10.1016/0891-5849(94)90054-X.

Vaijanathappa, J., & Badami, S. (2009) Antiedematogenic and free radical scavenging activity of swertiamarin isolated from Enicostema axillare. Planta Med., 75, 12-17. doi: 10.1055/s-0028-1088333.

Vásquez, S. P. F., Mendonça, M. S., & Noda, S. N. (2014). Etnobotânica de plantas medicinais em comunidades ribeirinhas do Município de Manacapuru, Amazonas, Brasil. Acta Amazonica, 44(4), 457 - 472. doi:

Viljoen, A., Mncwangi, N., & Vermaak, I. (2012). Anti-inflammatory iridoids of botanical origin. Curr. Med Chem., 19(14), 2104-27. doi: 10.2174/092986712800229005.

Wang, M. Y. & Su, C. (2001). Cancer preventive effect of Morinda citrifolia (Noni). Annals of the New York Academy of Sciences, 952(1), 161-168. doi: 10.1111/j.1749-6632.2001.tb02737.x.

Wang, M., Wang, Q., Yang, Q., Yan, X., Feng, S. & Wang, Z. (2020). Comparison of anthraquinones, iridoid glycosides and triterpenoids in Morinda officinalis and Morinda citrifolia using UPLC/Q-TOF-MS and multivariate statistical analysis. Molecules, 25(1), 1-16. doi: 10.3390/molecules25010160.

Wang, X., Shi, L., Wang, X., Feng, Y. & Wang, Y. (2019). MDG-1, an ophiopogon polysaccharide, restrains process of non-alcoholic fatty liver disease via modulating the gut-liver axis, Int. J. Biol. Macromol., 141, 1013-1021. doi: 10.1016/j.ijbiomac.2019.09.007.

West, B. J., Tani, H., Palu, A. K., Tolson, C. B., & Jensen, C. J. (2007). Safety tests and antinutrient analysis of noni (Morinda citrifolia L.) leaf. Journal of the Science of Food and Agriculture, 87(14), 2583-88. doi:

Wigati, D., Anwar, K., Sudarsono, & Nugroho, A. E. (2016). Hypotensive activity of ethanolic extracts of Morinda citrifolia L. leaves and fruit in dexamethasone-induced hypertensive rat. Evidence-Based Complementary and Alternative Medicine, 22(1), 107-113. doi: 10.1177/2156587216653660.

Wigati, D., Anwar, K., Sudarsono, Nugroho, A.E. (2017). Hypotensive activity of ethanolic extracts of Morinda citrifolia L. leaves and fruit in dexamethasone-induced hypertensive rat. J. Evid. Based Complement. Altern. Med., 22, 107–113

Wojdylo, A., Oszmianski, J., & Czemerys, R. (2007). Antioxidant activity and phenolic compounds in 32 selected herbs. Food Chemistry, 105(3), 940-949.

Xu, H., Shen, J., Liu, H., Shi, Y., Li, L., & Wei, M. (2006). Morroniside and loganin extracted from Cornus officinalis have protective effects on rat mesangial cell proliferation exposed to advanced glycation end products by preventing oxidative stress. Can. J. Physiol Pharmacol., 84(12), 1267–73. doi: 10.1139/y06-075.

Yang, J., Gadi, R., & Thomson T. (2011). Antioxidant capacity, total phenols, and ascorbic acid content of noni (Morinda citrifolia) fruits and leaves at various stages of maturity. Micronesica., 41,167-176.

Yang, X., Lin, C., Cai, S., Li, W., Tang, J., & Wu, X. (2019). Therapeutic effects of noni fruit water extract and polysaccharide on oxidate sstres and inflammation in mice under higt-fat diet. Food & Function, 11(1), 1133-1145. doi:10.1039/c9fo01859j.

Yang, X., Mo, W., Zheng, C., Li, W. Tang, J., & Wu, X. (2020). Alleviating effects of noni fruit polysaccharide on hepatic oxidative stress and inflammation in rats under a high-fat diet and its possible mechanisms. Food & Function, 11(4), 2953-2968. doi: 10.1039/d0fo00178c.

Yokozawa, T., Kang, K.S., Park, C.H., Noh, J.S., Yamabe, N., Shibahara, N., & Tanaka T. (2010). Bioactive constituents of Corni Fructus: the therapeutic use of morroniside, loganin, and 7-O-galloyl-D-sedoheptulose as renoprotective agents in type 2 diabetes. Drug Discov Ther., 4(4), 223–34.

Zang M., Zuccollo A., Hou X., Negata, D., Walsh, K., Herscovitz, H., Brecher, P., Ruderman, N. B., & Cohen, R. A. (2004). AMP-activated protein kinase is required for the lipid-lowering effect of metformin in insulin-resistant human HepG2 cells. Journal of Biological Chemistry, 279(46), 47898-905. doi: 10.1074/jbc.M408149200.



How to Cite

GOMES-SOUSA, N. C. .; NUNES, L. dos S.; MARTINS, H. P. dos S. .; PERCÁRIO, S.; DOLABELA, M. F. . Pharmacological activities and their relationship with the oxidative stress of Morinda Citrifolia L. (Rubiaceae): an integrative review. Research, Society and Development, [S. l.], v. 10, n. 4, p. e30210414149, 2021. DOI: 10.33448/rsd-v10i4.14149. Disponível em: Acesso em: 15 may. 2021.



Health Sciences