Affinity of Staphylococcus aureus for prostheses colonization compared to other bacteria. An in vitro study

Authors

DOI:

https://doi.org/10.33448/rsd-v10i5.14701

Keywords:

Biofilms; Prostheses and implants; Polytetrafluoroethylene; Vascular surgical procedures; Breast implant.

Abstract

Staphylococcus aureus biofilms have been recognized as a leading cause of multiple infections, including implant-associated infections and chronic wounds. We evaluated the colonization capacity of two distinct textured prostheses by different bacterial strains. Staphylococcus aureus, Staphylococcus epidermidis, Escherichia coli, Proteus mirabilis and Enterococcus faecalis were evaluated. Initially, the hydrophobicity and biofilm formation capacity were determined. Subsequently, 20 fragments of vascular prosthesis and 20 silicone prostheses were embedded in suspensions with the microorganisms and incubated. The prostheses were then sown in culture medium and incubated for 48 hours. Petri dishes were photographed and analyzed by fractal dimension. The Kruskal-Wallis test and the Dunn test were applied for the analysis of biofilm formation. To compare the mean intensity for the type of bacteria and the type of prosthesis, a general linear model was applied. Staphylococcus aureus was the bacterium with the highest colonization density in both prostheses (p = 0.0001). E. coli showed strong adherence in the biofilm formation capacity test (p = 0.0001), however, it did not colonize either prosthesis. We demonstrated that Staphylococcus aureus has a greater affinity for vascular and silicone prostheses than other bacteria.

References

Alp, E., Elmali, F., Ersoy, S., Kucuk, C., & Doganay, M. (2014). Incidence and risk factors of surgical site infection in general surgery in a developing country. Surgery today, 44(4), 685–689. https://doi.org/10.1007/s00595-013-0705-3

Arad, E., Navon-Venezia, S., Gur, E., Kuzmenko, B., Glick, R., Frenkiel-Krispin, D., Kramer, E., Carmeli, Y. & Barnea, Y. (2013). Novel rat model of methicillin-resistant Staphylococcus aureus-infected silicone breast implants: a study of biofilm pathogenesis. Plastic and Reconstructive Surgery, 131(2), 205-214. https://doi.org/10.1097/PRS.0b013e3182778590.

Bhattacharya, M., Wosniak, D. J., Stoodley, P. & Hall-Stoodley, L. (2015). Prevention and treatment of Staphylococcus aureus biofilms. Expert Review of Anti-infective Therapy, 13(12), 1499-1516. https://doi.org/10.1586/14787210.2015.1100533.

Bessa, L. J., Fazii, P., Di Giulio, M., & Cellini, L. (2015) Bacterial isolates from infected wounds and their antibiotic susceptibility pattern: some remarks about wound infection. International Wound Journal, 12, 47-52. http://dx.doi.org/10.1111/iwj.12049

Campbell, C. D., Brooks, D. H., Webster, M. W. & Bahnson, H. T. (1976). The use of expanded microporous polytetrafluoroethylene for limb salvage: a preliminary report. Surgery, 79, 485.

Champely S. pwr: Basic Functions for Power Analysis. R package version. 2018. Recovered from https://cran.r-project.org/web/packages/pwr/pwr.pdf.

Chang, S., Popowich, Y., Greco, R. S. & Haimovich, B. (2003). Neutrophil survival on biomaterials is determined by surface topography. Journal of Vascular Surgery, 37(5), 1082-1090.

Ghiselli, R., Giacometti, A., Goffi, L., Cirioni, O., Mocchegiani, F., Orlando, F., Paggi, A. M., Petrelli, E., Scalise, G., & Saba, V. (2001). Prophylaxis against Staphylococcus aureus vascular graft infection with mupirocin-soaked, collagen-sealed dacron. The Journal of surgical research, 99(2), 316–320. https://doi.org/10.1006/jsre.2001.6138

Henriques, A., Vasconcelos, C. & Cerca, N. (2013). Why biofilms are important in nosocomial infections - the state of the art. Arquivos de Medicina, 27(1), 27-36.

Igari, K., Kudo, T., Toyofuku, T., Jibiki, M., Sugano, N., & Inoue, Y. (2014). Treatment strategies for aortic and peripheral prosthetic graft infection. Surgery today, 44(3), 466–471. https://doi.org/10.1007/s00595-013-0571-z

Lister, J. L. & Horswill, A. R. (2014). Staphylococcus aureus biofilms: recent developments in biofilm dispersal. Frontiers in Cellular and Infection Microbiology, 4, 178. https://doi.org/10.3389/fcimb.2014.00178.

Locatelli, C. I., Englert, G. E., Kwitko, S. & Simonetti, A. B. (2004). In vitro bacterial adherence to silicone and polymetylmethacrylate intraocular lenses. Arquivos Brasileiros de Oftalmologia, 67, 241-248.

Maharjan, G., Khadka, P., Siddhi Shilpakar, G., Chapagain, G. & Dhungana, G, R. (2018). Catheter-associated urinary tract infection and obstinate biofilm producers. Canadian Journal of Infectious Diseases and Medical Microbiology, 7624857. https://doi.org/10.1155/2018/7624857.

Mengesha, R. E., Kasa, B. G., Saravanan, M., Berhe, D. F., & Wasihun, A. G. (2014). Aerobic bacteria in post surgical wound infections and pattern of their antimicrobial susceptibility in Ayder Teaching and Referral Hospital, Mekelle, Ethiopia. BMC research notes, 7, 575. https://doi.org/10.1186/1756-0500-7-575

Nadzam, G. S., De La Cruz, C., Greco, R. S. & Haimovich, B. (2000). Neutrophil adhesion to vascular prosthetic surfaces triggers nonapoptotic cell death. Annals of Surgery, 231: 587-599

Nai, G. A., Martelli, C. A. T., Medina, D. A. L., Oliveira, M. S. C., Caldeira, I. D., Henriques, B. C., Portelinha, M. J. S., Eller, L. K. W. & Marques, M. E. A. (2021). Fractal dimension analysis: a new tool for analyzing colony-forming units. MethodsX, 8, 101228. https://doi.org/10.1016/j.mex.2021.101228

Pereira, A. S., Shitsuka, D. M., Parreira, F. J., & Shitsuka R. (2018). Metodologia da pesquisa científica. UFSM. https://repositorio.ufsm.br/bitstream/handle/1 /15824/Lic_C omputacao_Metodologia-Pesquisa-Cientifica.pdf?sequence=1.

Rabin, N., Zheng, Y., Opoku-Temeng, C., Du, Y., Bonsu, E. & Sintim, H. O. (2015). Biofilm formation mechanisms and targets for developing antibiofilm agents. Future Medicinal Chemistry, 7(4), 493-512. https://doi.org/10.4155/fmc.15.6

Stolze, N., Bader, C., Henning, C., Mastin, J., Holmes, A. E. & Sutlief, A. L. (2019). Automated image analysis with ImageJ of yeast colony forming units from cannabis flowers. Journal of Microbiological Methods, 164, 105681. https://doi.org/10.1016/j.mimet.2019.105681.

Tiba, M. R., Nogueira, G. R. & Leite, M. S. (2009). Study on virulence factors associated with biofilm formation and phylogenetic groupings in Escherichia coli strains isolated from patients with cystitis. Revista da Sociedade Brasileira de Medicina Tropical, 42, 58-62.

Turtiainen, J., Hakala, T., Hakkarainen, T. & Karhukorpi, J. (2014). The impact of surgical wound bacterial colonization on the incidence of surgical site infection after lower limb vascular surgery: a prospective observational study. European Journal of Vascular and Endovascular Surgery, 47(4), 411-417. https://doi.org/10.1016/j.ejvs.2013.12.025.

Van De Vyver, H., Bovenkamp, P. R., Hoerr, V., Schwegmann, K., Tuchscherr, L., Niemann, S., Kursawe, L., Grosse, C., Moter, A., Hansen, U., Neugebauer, U., Kuhlmann, M. T., Peters, G., Hermann, S. & Löffler, B. (2017). A novel mouse model of Staphylococcus aureus vascular graft infection: noninvasive imaging of biofilm development in vivo. American Journal of Pathology, 187, 268-279.

Ziuzina, D., Boehm, D., Patil, S., Cullen, P. J. & Bourke, P. (2015). Cold Plasma inactivation of bacterial biofilms and reduction of quorum sensing regulated virulence factors. PLoS One, 10(9), e0138209. https://doi.org/10.1371/journal.pone.0138209.

Downloads

Published

01/05/2021

How to Cite

NAI, G. A.; MEDINA, D. A. L. .; MARTELLI, C. A. T.; OLIVEIRA, M. S. C. de .; CALDEIRA, I. D. .; HENRIQUES, B. C.; PORTELINHA, M. J. S.; ALMEIDA, M. de C. .; ELLER, L. K. W. .; OLIVEIRA NETO, F. V. de .; MARQUES, M. E. A. . Affinity of Staphylococcus aureus for prostheses colonization compared to other bacteria. An in vitro study. Research, Society and Development, [S. l.], v. 10, n. 5, p. e15310514701, 2021. DOI: 10.33448/rsd-v10i5.14701. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/14701. Acesso em: 19 apr. 2024.

Issue

Section

Health Sciences