Obtaining and characterizing microemulsion systems containing Alkali-Surfactant-Polymer (ASP) for advanced oil recovery application

Authors

DOI:

https://doi.org/10.33448/rsd-v10i5.14807

Keywords:

Microemulsion systems; ASP; Fluid rheology.

Abstract

Fluids in terms of rheological behavior can be classified into Newtonians and non-Newtonians. Newtonians are fluids that have unique and absolute viscosities, because the ratio between shear stress and shear rate is constant. In the oil industry, most fluids, such as microemulsions, oil and polymeric solutions, do not exhibit Newtonian behavior. To understand the behavior of chemical fluids, it is necessary to analyze some parameters to interpret their properties and applicability. In this context, the present work aims to obtain and characterize microemulsion systems containing Alkali, Surfactant, and Polymer, and verify their applicability in advanced oil recovery. Thus, we obtained five microemulsion systems consisting of saponified coconut oil (surfactant), Butan-1-ol (co-surfactant), kerosene (oil phase), Na2CO3 (alkali), water and different percentages of the polymer. The systems were characterized by analyzes of particle diameter, surface tension, viscosity and rheological behavior using mathematical models. Droplet sizes showed characteristic values of micellar aggregates. Surface tension presented a slight elevation when the percentage of polymer in the microemulsion increased. Through the rheological study, it was possible to observe that experimental values were better adjusted to the Ostwald-de Waele “power-law” model. As the percentage of polymer in the system increased, we calculated the apparent viscosity of the systems and observed an increasing change in viscosity values, a result of great interest to enhanced oil recovery studies.

References

Aiolfi, C. S., & Romero, O. J. (2019). Bibliometric analysis of the injection of polymeric solutions in oil recovery. Research, Society and Development, 8(7), e35871107. https://doi.org/10.33448/rsd-v8i7.1107

Aitkulov, A., Dao, E., & Mohanty, K. K. (2018). Asp flood after a polymer flood vs. asp flood after a water flood. In: SPE Improved Oil Recovery Conference, Tulsa. 10.2118/190271-MS.

Al-Murayri, M. T., Kamal, D. S., Suniga, P., Fortenberry, R., Britton, C., Pope, G. A., & Upamali, K. A. N. (2017, setembro). Improving ASP Performance in Carbonate Reservoir Rocks Using Hybrid-Alkali. In: SPE Annual Technical Conference and Exhibition. San Antonio, Texas, USA. https://doi.org/10.2118/187213-MS

Borges, S. M. S., Almeida, P. M. M., Lima, A. M. V., Musse, A. P. S., & Quintella, C. M. (2007). Secondary recovery of heavy oil and completion of mature field reservoirs using the by-product (crude glycerin) from biodiesel production. Boletim Técnico da Produção de Petróleo, 2, 131-152.

http://www.eventoexpress.com.br/cd-36rasbq/resumos/T1365-1.pdf

Castro Dantas, T. N., Santanna, V. C., Souza, T. T. C., Lucas, C. R. S., & Dantas Neto, A. A. (2018). Microemulsions and nanoemulsions applied to well stimulation and enhanced oil recovery (EOR). Brazilian Journal of Petroleum and Gas, 12(4), 25-265.

http://dx.doi.org/10.5419/bjpg2018-0023.

Castro Dantas, T. N., Soares, A. P. J., Wanderley Neto, A. O., & Dantas Neto, A. A. (2014). Implementing new microemulsion systems in wettability inversion and oil recovery from carbonate reservoirs. Energy Fuels, 28(11), 6749–6759.

https://pubs.acs.org/doi/abs/10.1021/ef501697x

Castro Dantas, T. N., Souza, T. T. C., Dantas Neto, A. A., Moura, M. C. P. D. A., & Barros Neto, E. L. (2017). Experimental study of nanofluids applied in EOR processes. J. Surfactants Deterg, 20(5), p.1095–1104. https://link.springer.com/article/10.1007/s11743-017-1992-2.

Chen, G., Tian, Y., Zhao, X, & Li, X. (2012). Optimization of the asp flooding injection pattern for sub-layers in daqing oil field. Shiyou Xuebao. Acta Petrolei Sinica, 33, p.459–464. https://www.researchgate.net/publication/286983829_Optimization_of_the_ASP_flooding_injection_pattern_for_sub-layers_in_Daqing_oilfield

Cheng, X., Kleppe, J., & Torsaeter, O. (2018, abril). Simulation study of effects of surfactant properties on surfactante enhanced oil recovery in fractured reservoirs. In: SPE Kingdom of Saudi Arabia Annual Technical Symposium and Exhibition, Dammam. 10.2118/192430-MS.

Costa, S. E. D., Barros Neto, E. L., Oliveira, M. C. A., & Santos, J. S. C. (2017). Mechanical and petrophysical analysis of synthetic sandstone for enhanced oil recovery applications. Brazilian Journal of Petroleum and Gas, 11, 131-140.

http://dx.doi.org/10.5419/bjpg2017-0011

Curbelo, F. D. S., Garnica, A. I. C., Nascimento, B. S. C., Leal, G. L. R., Tertuliano, T. M., & Da Silva, R. R. (2021). Influence of the oleic phase and co-surfactante addition in non-ionic micromulsified systems. Research, Society and Development, 10(2), e58410212902.https://doi.org/10.33448/rsd-v10i2.12902

Fox, R. W., & Mcdonald, A. T. Introdução à mecânica dos fluidos, LTC. 1998.

Garnica, A. I. C., Curbelo, F. D. S., Queiroz, I. X., Araújo. E. A., Sousa, R. P. F., Paiva, E. M., Braga, G. S., & Araújo, E. A. (2021). Development of microemulsions as a lubricant additive in drilling fluid. Research, Society and Development, 9(7), e212973703. https://doi.org/10.33448/rsd-v9i7.3703.

Gomes, E. A. D. S., Dantas Neto, A. A., Barros Neto, E. L., Lima, F. M. Soares, R. G. F., & Nascimento, R. E. D. S. (2007). Application of rheological models in a system: paraffin/solvente/surfactant. In:4° PDPETRO, Campinas, SP: ABPG. http://www.portalabpg.org.br/PDPetro/4/resum os/4PDPETRO_2_3_0197-1.pdf.

Gradzielski, M. (2008). Recent developments in the characterisation of microemulsions. Current Opinion in Colloid and Interface Science, 13(4), 263–269.

https://doi.org/10.1016/j.cocis.2007.10.006.

Huang, W., Dong, Y., Zhao, J., Liu, X., Fan, Y., Bai, H., & Hao, J. (2019, outubro) A/SP alternating flooding, a modifiedasp flooding technology. In: SPE Russian Petroleum Technology Conference, Moscow. 10.2118/196768-MS.

Gurgel, A. (2004). Characterisation of Novel Self-assembled Systems and Applications in Chemical Reactions.

https://books.google.com.br/books?id=mGnOxQEACAAJ.

Hendraningrat, L., Li, S., & Torsaeter, O. (2013). A coreflood investigation of nanofluid enhanced oil recovery. Journal of Petroleum Science and Engineering, 111, p128–38. 10.1016/j.petrol.2013.07.003.

Huang, B., Li, X., Fu, C., Wang, Y., & Cheng, H. (2019). Study Rheological Behavior of Polymer Solution in Different-Medium-Injection-Tools. Polymers, 11(2), p319. https://doi.org/10.3390/polym11020319

Humphry, K. J., Lee, V. D., Southwick, J. G., Ineke, E. M., & Batenburg, D. W. (2013, setembro) Microemulsion flow in porous media: Implications for alkaline-surfactant-polymer flooding. In: SPE Enhanced Oil Recovery Conference, Kuala Lumpur. 10.2118/165233-MS.

Lucena Neto, F. (2005). Study of the influence of surfactants in micro emulsified systems in the extraction of gallium and aluminum. Doctoral thesis (Chemical engineering) – PPGEQ - Federal University of Rio Grande do Norte.

Machado, J. C. V. (2002). Rheology and fluid flow: emphasis on the oil industry. Interciência. https://www.editorainterciencia.com.br/?pg=prodDetalhado.asp

Mendham, J., Denney, R. C., Barnes, J. D., & Thomas, M. (1992). Vogel: Quantitative Chemical Analysis. (5a ed.), Editora Guanabara.

Oliveira, K. C., Juviniano, H. B. M., Hilario, L. S., Dantas, T. N. C., & Silva, D. R. (2017). Influence of glycerin P.A. in the solution of surfactants applied to EOR. In: 9 PDPetro, 2017, Maceió - AL. CD-Rom do 9 PDPetro. Natal - RN: ABPG. http://www.portalabpg.org.br/site_portugues/anais/anais9/repos itorio/trabalho/470509300820178524.pdf.

Ribeiro, L. S., Dantas, T. N. C., Dantas Neto, A. A., Melo, K. C., Moura, P. A., & Aum, P. T. P. (2016). The use of produced water in water-based drilling fluids: Influence of calcium and magnesium concentrations. Braziliam Journal of petrolium and gas, 10(4). http://dx.doi.org/10.5419/bjpg2016-0019.

Rossi, C.G.F.T, Castro Dantas, T. N. C., & Neto Dantas, A. A. (2006). Surfactants: A basic approach and perspective of industrial applicability. Revista Universidade Rural, Série Ciências Exatas e da Terra, 25, 233-245.

Soares, A. P. J., Dantas, T. N. C., & Dantas Neto, A. A. (2011). Application of microemulsion in the recovery of oil from carbonate reservoirs. In: 6º Congresso Brasileiro de P&D em Petróleo e Gás, Florianópolis. 6º PDPETRO. http://www.portalabpg.org.br/site_portugues/anais/anais9/repo sitorio/trabalho/103007280820178727.pdf

Sharma, H., Dufour, S., Arachchilage, G. W. P. P., Weerasooriya, U., Pope, G. A., & Mohanty. K. (2015). Alternative álcalis for asp flooding in na hydrite containing oil reservoirs. Fuel. 140, 407-420. https://doi.org/10.1155/2020/2829565.

Shafiee Najafi, S. A., Kamranfar, P., Madani, M., Shadadeh, M., & Jamialahmadi, M. (2017). Experimental and theoretical investigation of CTAB microemulsion viscosity in the chemical enhanced oil recovery process. Journal of Molecular Liquids. 232:382–9.

1016/j.molliq.2017.02.092.

Sharma, T., & Sangwai, J. S. (2017). Silica nanofluids in polyacrylamide with and without surfactant: viscosity, surface tension, and interfacial tension with liquid paraffin. Journal of Petroleum Science and Engineering, 152, p575-585. 10.1016/j.petrol.2017.01.039.

Sheng, J. (2011) Modern Chemical Enhanced Oil Recovery: Theory and Practice. Elsevier Science, 2011. https://books.google.com.br/books?id=etgfFzWrIosC.

Silva, D. C., Lucas, C. R., Juviniano, H. B. M., Moura, M. C. P. A., Castro Dantas, T. N., & Dantas Neto, A. A. (2019). Analysis of the use of microemulsion systems to treat petroleum sludge from a water flotation unit. Journal of Environmental Chemical Engineering, 7.

https://doi.org/10.1016/j.jece.2019.102934

Silva, D. C., Lucas, C. R., Juviniano, H. B. M., Moura, M. C. P. A., Castro Dantas, T. N., & Dantas Neto, A. A. (2020). Novel produced water treatment using microemulsion systems to remove oil contents. Journal of Water Process Engineering, 33, 01-07. https://doi.org/10.1016/j.jwpe.2019.101006

Teixeira, E. R. F. (2012). Influence of acrylamide and polyacrylamide in a microemulsified system for application in advanced oil recovery. Master’s dissertation (Chemical engineering) – PPGEQ - Federal University of Rio Grande do Norte.

Veerabhadrappa, S. K., Urbissinova, T. S., Trivedi, J. J., & Ergun, K. (2011, maio). Polymer Screening Criteria for EOR Application - A Rheological Characterization Approach. Paper presented at the SPE Western North American Region Meeting, Anchorage, Alaska, USA. https://doi.org/10.2118/144570-MS.

Viana, F. F. (2013). Oil sludge treatment with microemulsified systems. Master's Dissertation (Chemistry) - PPGQ - Federal University of Rio Grande do Norte. https://repositorio.ufrn.br/jspui/bitstream/123456789/17730/1/FlaviaFV_DISSERT.pdf

Viana, F. F., De Castro Dantas, T. N., Rossi, C. G. G. T., Dantas Neto, A. A., & Silva, M. S. (2015). Aged oil sludge solubilization using new microemulsion systems: Design of experiments. Journal os Molecular Liquids. 210, 44-50. 10.1016/j.molliq.2015.02.042.

Volokitin, Y., Sakhibgareev, R. S. M., & Nurieva, O. (2012, outubro). Chemical and analytical work in support of west salym field enhanced oil recovery project (ASP). In: SPE Russian Oil and Gas Exploration and Production Technical Conference and Exhibition, Moscow. 10.2118/162067-RU.

Zhong, H., Yang, T., Yin, H., Fu, C., & Lu, J. (2018, setembro). The role of chemicals loss in sandstone formation in asp flooding enhanced oil recovery. In: SPE Annual Technical Conference and Exhibition, Dallas. 10.2118/191545-PA.

Downloads

Published

09/05/2021

How to Cite

ALVES, H. G.; OLIVEIRA, G. V. B. de; VIANA, F. F.; RODRIGUES, M. A. F.; DANTAS NETO, A. A. .; DANTAS, T. N. de C. . Obtaining and characterizing microemulsion systems containing Alkali-Surfactant-Polymer (ASP) for advanced oil recovery application. Research, Society and Development, [S. l.], v. 10, n. 5, p. e33010514807, 2021. DOI: 10.33448/rsd-v10i5.14807. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/14807. Acesso em: 26 apr. 2024.

Issue

Section

Engineerings