Effect of operational conditions and kinetic study in the electrochemical degradation of methylene blue dye onto a Ti/Ru0.3Ti0.7O2 anode

Authors

DOI:

https://doi.org/10.33448/rsd-v10i5.14918

Keywords:

Electrooxidation; Methylene Blue; Ti/Ru0.3Ti0.7O2 anode; Kinetic.

Abstract

Textile and food effluents commonly contain in their composition dye compounds harmful to human health and the environment and in this context advanced oxidation technologies such as electrochemical processes have emerged as an alternative treatment for refractory compounds present in these wastewaters. Thus, this work investigated the degradation of the basic methylene blue dye at room temperature (25 ºC) via electrocatalytic treatment with commercial Ti/Ru0.3Ti0.7O2 anode (30% RuO2 and 70% of TiO2). Experimental studies at pH = 6.8 were performed to evaluate the effect of the electrolysis potential, nature and concentration of the electrolytic support and initial concentration of dye on the efficiency and kinetics of degradation. The results showed degradations greater than 90% in 60 min of treatment by indirect electrolysis using 0.01 mol L-1 NaCl and 0.01 mol L-1 Na2SO4 as electrolytic support under 5.0 V potential at concentrations between 5 mg L-1 and 25 mg L-1. Electrodegradation kinetics were typically first order. In general, the degradation efficiency values found confirmed the promising character of the application of dimensionally stable anodes in the depollution of colored wastewater.

References

Alaoui, A., El Kacemi, K., El Ass, K., Kitane, S. & El Bouzidi, S. (2015). Activity of Pt/MnO2 electrode in the electrochemical degradation of methylene blue in aqueous solution. Separation and Purification Technology, 154, 281–289. https://doi.org/10.1016/j.seppur.2015.09.049.

Alves, P. D. P., Spagnol, M., Tremiliosi-Filho, G. & Andrade, A. R. (2004). Investigation of the influence of the anode composition of DAS-type eletrodes on the electrocatalytic oxidation on phenol in neutron medium. Journal Brazilian Chemical Society, 15, 626–634. https://doi.org/10.1590/S0103-50532004000500003.

Baddouh, A., Bessegato, G. G., Rguiti, M. M., El Ibrahimi, B., Bazzi, L., Hilali, M. & Zanoni, M. V. B. (2018). Electrochemical decolorization of Rhodamine B dye: Influence of anode material, chloride concentration and current density. Journal of Environmental Chemical Engineering, 6(2), 2041–2047. https://doi.org/10.1016/j.jece.2018.03.007.

Brasil. Ministério da Saúde. (2017). Portaria de consolidação n º5, de 28 de Setembro de 2017. https://portalarquivos2.saude.gov.br/images/pdf/2018/marco/29/PRC-5-Portaria-de-Consolida----o-n---5--de-28-de-setembro-de-2017.pdf

Callado, N. H., Damianovic, M. H. Z. & Foresti, E. (2017). Influência da razão DQO/[SO4-2] e da concentração de Na+ na remoção de matéria orgânica e sulfato em reator UASB. Engenharia Sanitária Ambiental, 22(2), 381–390, 2017. https://doi.org/10.1590/s1413-41522016140811.

Catanho, M., Malpass, G. R. P. & Motheo, A. D. J. (2006). Evaluation of electrochemical and photoelectrochemical methods for the degradation of three textile dyes. Quimica Nova, 29(5), 983–989. https://doi.org/10.1590/s0100-40422006000500018.

Companhia de Tecnologia Ambiental do Estado de São Paulo – CETESB. (2009). Apêndice D: Significado Ambiental e Sanitário das Variáveis de Qualidade. São Paulo: CETESB.

Collivignarelli, M. C., Abbà, A., Miino, M. C. & Damiani, S. (2019). Treatments for color removal from wastewater: State of the art. Journal of Environmental Management, 236, 727–745. https://doi.org/10.1016/j.jenvman.2018.11.094.

Comninellis, C. & Chen, G. (2010). Electrochemistry for the Environment. Springer-Verlag.

Cruz-Díaz, M. R., Rivero, E. P., Rodríguez, F. A. & Domínguez-Bautista, R. (2018). Experimental study and mathematical modeling of the electrochemical degradation of dyeing wastewaters in presence of chloride ion with dimensional stable anodes (DSA) of expanded meshes in a FM01-LC reactor. Electrochimica Acta, 260, 726–737. https://doi10.1016/j.electacta.2017.12.025.

Fadillah, G., Saleh, T. A., Wahyuningsih, S., Putri, E. N. K. & Febrianastuti, S. (2019). Electrochemical removal of methylene blue using alginate-modified graphene adsorbents. Chemical Engineering Journal, 378, 122140–122150. https://doi.org/10.1016/j.cej.2019.122140.

Fayazi, M. & Ghanei-Motlagh, M. (2020). Electrochemical mineralization of methylene blue dye using electro-Fenton oxidation catalyzed by a novel sepiolite/pyrite nanocomposite. International Journal of Environmental Science and Technology, 17(11), 4541–4548. https://doi: 10.1007/s13762-020-02749-2.

Garcia-Segura, S., Ocon, J. D. & Chong, M. N. (2018). Electrochemical oxidation remediation of real wastewater effluents - A review. Process Safety and Environmental Protection, 113, 48–67. https://doi.org/10.1016/j.psep.2017.09.014.

Gupta, A. K., Pal, A. & Sahoo, C. (2006). Photocatalytic degradation of a mixture of Crystal Violet (Basic Violet 3) and Methyl Red dye in aqueous suspensions using AgC doped TiO2. Dyes and Pigments, 69, 224–232. http://dx.doi.org/10.1016/j.dyepig.2005.04.001.

Indu, M. S., Gupta, A. K. & Sahoo, C. (2014). Electrochemical oxidation of methylene blue using lead acid battery anode. APCBEE Procedia, 9, 70–74. https://doi.org/10.1016/j.apcbee.2014.01.013.

Jawad, N. H. & Najim, S. T. (2018). Removal of methylene blue by direct electrochemical oxidation method using a graphite anode. Materials Science and Engineering, 454, 1–10. https://doi.org/10.1088/1757-899X/454/1/012023.

Kaur, P., Sangal, V. K. & Kushwaha, J. P. (2019). Parametric study of electro-Fenton treatment for real textile wastewater, disposal study and its cost analysis. International Journal of Environmental Science and Technology, 16(2), 801–810. https://doi.org/10.1007/s13762-018-1696-9.

Krstić, V. & Pešovski, B. (2019). Reviews the research on some dimensionally stable anodes (DSA) based on titanium. Hydrometallurgy, 185, 71–75. https://doi.org/10.1016/j.hydromet.2019.01.018.

Lanza, M. R. V. & Bertazzoli, R. (2002). Selection of a commercial anode oxide coating for electro-oxidation of cyanide. Journal of the Brazilian Chemical Society, 13, 345–351. https://doi.org/10.1590/S0103-50532002000300009.

Lin, J., Luo, Z., Liu, J. & Li, P. (2018). Photocatalytic degradation of methylene blue in aqueous solution by using ZnO-SnO2 nanocomposites. Materials Science in Semiconductor Processing, 87(20), 24–31. https://doi.org/10.1016/j.mssp.2018.07.003.

Li, Y., Du, Q., Liu T., Sun J., Wang, Y., Wu, S., Wang, Z., Xia, Y. & Xia, L. (2013). Methylene blue adsorption on graphene oxide/calcium alginate composites. Carbohydrate Polymers, 95, 501–507. http://dx.doi.org/10.1016/j.carbpol.2013.01.094.

Martínez-Huitle, C. A. & Panizza, M. (2018). Electrochemical oxidation of organic pollutants for wastewater treatment. Current Opinion in Electrochemistry, 11(1), 62–71. https://doi.org/10.1016/j.coelec.2018.07.010.

Nakamura, K. C., Guimarães, L. S., Magdalena, A. G., Angelo, A. C. D., De Andrade, A. R., Garcia-Segura, S. & Pipi, A. R. F. (2019). Electrochemically-driven mineralization of reactive blue 4 cotton dye: On the role of in situ generated oxidants. Journal of Electroanalytical Chemistry, 840, 415–422. https://doi.org/10.1016/j.jelechem.2019.04.016.

Nidheesh, P. V., Kumar, A., Babu, D. S., Scaria, J. & Kumar, M. S. (2020). Treatment of mixed industrial wastewater by electrocoagulation and indirect electrochemical oxidation. Chemosphere, 251, 126437–126447. https://doi.org/10.1016/j.chemosphere.2020.126437.

Oliveira, L. G., Fernandes, F. H., Mesquita, W. D., Junior, M. G., Santos, M. R. C. & Gurgel, M. F. C. (2020). Uma revisão do uso de processos oxidativos avançados para descoloração de águas residuais de efluentes. Revista Processos Químicos, 13(26), 105–112. https://doi.org/10.19142/rpq.v13i26.546.

Orts, F., Bonastre, J., Fernández, F. & Cases, F. (2020). Effect of chloride on the one step electrochemical treatment of an industrial textile wastewater with tin dioxide anodes. The case of trichromy procion HEXL. Chemosphere, 245, 125396–125403. https://doi.org/10.1016/j.chemosphere.2019.125396.

Paula Júnior., D. R. & Foresti, E. (2009). Sulfide toxicity kinetics of a UASB reactor. Brazilian Journal of Chemical Engineering, 26(4), 669–675. https://doi.org/10.1590/S0104-66322009000400005.

Paulino, T. R. S., Araújo, R. S. & Salgado, B. C. B. (2015). Estudo de oxidação avançada de corantes básicos via reação Fenton (Fe2+/H2O2). Engenharia Sanitaria e Ambiental, 20(3), 347–352. https://doi.org/10.1590/S1413-41522015020000111627.

Salles, P. T. F., Pelegrine, N. N. B & Pelegrine, R. T. (2006). Tratamento eletroquímico de efluente industrial contendo corantes reativos. Engenharia Ambiental, 3(2), 25–40.

Samarghandi, M. R., Dargahi, A., Shabanloo, A., Nasab, H. Z., Vaziri, Y. & Ansari, A. (2020). Electrochemical degradation of methylene blue dye using a graphite doped PbO2 anode: Optimization of operational parameters, degradation pathway and improving the biodegradability of textile wastewater. Arabian Journal of Chemistry, 13(8), 6847–6864. https://doi.org/10.1016/j.arabjc.2020.06.038.

Santos, D. H. S., Duarte, J. L. S., Tavares, M. G. R., Tavares, M. G., Friedrich, L. C., Meili, L., Pimentel, W. R. O, Tonholo, J. & Zanta, C. L. P. S. (2020). Electrochemical degradation and toxicity evaluation of reactive dyes mixture and real textile effluent over DSA® electrodes. Chemical Engineering and Processing - Process Intensification, 153, 107940–107951. https://doi.org/10.1016/j.cep.2020.107940.

Singh, S., Lo, S. L., Srivastava, V. C. & Hiwarkar, A. D. (2016). Comparative study of electrochemical oxidation for dye degradation: Parametric optimization and mechanism identification. Journal of Environmental Chemical Engineering, 4(3), 2911–2921. https://doi.org/10.1016/j.jece.2016.05.036.

Tang, Y., He, D., Guo, Y., Qu, W., Shang, J., Zhou, L., Pan, R. & Dong, W. (2020). Electrochemical oxidative degradation of X-6G dye by boron-doped diamond anodes: Effect of operating parameters. Chemosphere, 258, 127368–127377. https://doi.org/10.1016/j.chemosphere.2020.127368.

Yaseen, D. A. & Scholz, M. (2019). Textile dye wastewater characteristics and constituents of synthetic effluents: A critical review. International Journal of Environmental Science and Technology, 16, 1193–1226. https://doi.org/10.1007/s13762-018-2130-z.

Published

07/05/2021

How to Cite

SOUZA, T. de O. .; RIBEIRO, J. A. S.; VIANA, F. E. P.; LIMA, J. R. de; CRUZ, J. de V.; ALMEIDA, E. da S.; ARAÚJO, R. dos S. Effect of operational conditions and kinetic study in the electrochemical degradation of methylene blue dye onto a Ti/Ru0.3Ti0.7O2 anode. Research, Society and Development, [S. l.], v. 10, n. 5, p. e35510514918, 2021. DOI: 10.33448/rsd-v10i5.14918. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/14918. Acesso em: 18 apr. 2024.

Issue

Section

Exact and Earth Sciences