Genistein acts in bone metabolism and improves peri-implant healing in rats with estrogen deficiency
DOI:
https://doi.org/10.33448/rsd-v10i5.15061Keywords:
Bone; Osteoporosis; Genistein; Dental implants.Abstract
The present study aimed to evaluate the peri-implantar bone healing in the presence of genistein treatment in ovariectomized rats. Thirty female rats with 4 months old were divided into 3 groups according to the experimental condition and the drug treatment: SHAM (rats submitted to the fictional surgery and gavage with 0.9% saline solution); OVX (rats submitted to bilateral ovariectomy and gavage with 0.9% saline solution); OVX GEN (rats submitted to bilateral ovariectomy and gavage with 1mg/day of genistein). 60 implants were installed, with two implants in each animal. The calcified group was subjected microcomputerized tomography and the parameters analysed was bone volume per tissue volume (BV/TV) and connective density (Cnn.Dn). The decalcified samples were evaluated through immunolabeling analysis, in order to detect the presence of RUNX2, Alkaline Phosphatase, Osteocalcin, Osteopontin and TRAP. All the quantitative data were submitted to the normality curve to determine the most adequate test. The significance level of p<0.05 was considered for all tests. The morphometric analysis of the OVX GEN group showed higher percentage of bone volume and lower connective density when compared with OVX. Immunohistochemical analysis favors expression. For the markers that positively label osteoblastic activity. This study shows that genistein therapy improves peri-implant bone healing in ovariectomized rats.
References
An, J., Yang, H., Zhang, Q., Liu, C., Zhao, J., Zhang, L., & Chen, B. (2016). Natural products for treatment of osteoporosis: The effects and mechanisms on promoting osteoblast-mediated bone formation. Life sciences, 147, 46–58. https://doi.org/10.1016/j.lfs.2016.01.024
Cepeda, S. B., Sandoval, M. J., Crescitelli, M. C., Rauschemberger, M. B., & Massheimer, V. L. (2020). The isoflavone genistein enhances osteoblastogenesis: signaling pathways involved. Journal of physiology and biochemistry, 76(1), 99–110. https://doi.org/10.1007/s13105-019-00722-3
Cepeda, S. B., Sandoval, M. J., Rauschemberger, M. B., & Massheimer, V. L. (2017). Beneficial role of the phytoestrogen genistein on vascular calcification. The Journal of nutritional biochemistry, 50, 26–37. https://doi.org/10.1016/j.jnutbio.2017.08.009
Dempster, D. W., Compston, J. E., Drezner, M. K., Glorieux, F. H., Kanis, J. A., Malluche, H., Meunier, P. J., Ott, S. M., Recker, R. R., & Parfitt, A. M. (2013). Standardized nomenclature, symbols, and units for bone histomorphometry: a 2012 update of the report of the ASBMR Histomorphometry Nomenclature Committee. Journal of bone and mineral research: the official journal of the American Society for Bone and Mineral Research, 28(1), 2–17. https://doi.org/10.1002/jbmr.1805
dos Santos, P. L., Queiroz, T. P., Margonar, R., Gomes de Souza Carvalho, A. C., Okamoto, R., de Souza Faloni, A. P., & Garcia, I. R., Jr (2013). Guided implant surgery: what is the influence of this new technique on bone cell viability?. Journal of oral and maxillofacial surgery : official journal of the American Association of Oral and Maxillofacial Surgeons, 71(3), 505–512. https://doi.org/10.1016/j.joms.2012.10.017
Drage, N. A., Palmer, R. M., Blake, G., Wilson, R., Crane, F., & Fogelman, I. (2007). A comparison of bone mineral density in the spine, hip and jaws of edentulous subjects. Clinical oral implants research, 18(4), 496–500. https://doi.org/10.1111/j.1600-0501.2007.01379.x
Drake, M. T., & Khosla, S. (2012). Male osteoporosis. Endocrinology and metabolism clinics of North America, 41(3), 629–641. https://doi.org/10.1016/j.ecl.2012.05.001
Evans, H. M., & Long, J. A. (1922). Characteristic Effects upon Growth, Oestrus and Ovulation Induced by the Intraperitoneal Administration of Fresh Anterior Hypophyseal Substance. Proceedings of the National Academy of Sciences of the United States of America, 8(3), 38–39. https://doi.org/10.1073/pnas.8.3.38
Fanti, P., Monier-Faugere, M. C., Geng, Z., Schmidt, J., Morris, P. E., Cohen, D., & Malluche, H. H. (1998). The phytoestrogen genistein reduces bone loss in short-term ovariectomized rats. Osteoporosis international : a journal established as result of cooperation between the European Foundation for Osteoporosis and the National Osteoporosis Foundation of the USA, 8(3), 274–281. https://doi.org/10.1007/s001980050065
Faverani, L. P., Polo, T., Ramalho-Ferreira, G., Momesso, G., Hassumi, J. S., Rossi, A. C., Freire, A. R., Prado, F. B., Luvizuto, E. R., Gruber, R., & Okamoto, R. (2018). Raloxifene but not alendronate can compensate the impaired osseointegration in osteoporotic rats. Clinical oral investigations, 22(1), 255–265. https://doi.org/10.1007/s00784-017-2106-2
Fu, S. W., Zeng, G. F., Zong, S. H., Zhang, Z. Y., Zou, B., Fang, Y., Lu, L., & Xiao, D. Q. (2014). Systematic review and meta-analysis of the bone protective effect of phytoestrogens on osteoporosis in ovariectomized rats. Nutrition research (New York, N.Y.), 34(6), 467–477. https://doi.org/10.1016/j.nutres.2014.05.003
Giro, G., Chambrone, L., Goldstein, A., Rodrigues, J. A., Zenóbio, E., Feres, M., Figueiredo, L. C., Cassoni, A., & Shibli, J. A. (2015). Impact of osteoporosis in dental implants: A systematic review. World journal of orthopedics, 6(2), 311–315. https://doi.org/10.5312/wjo.v6.i2.311
Harada, S., & Rodan, G. A. (2003). Control of osteoblast function and regulation of bone mass. Nature, 423(6937), 349–355. https://doi.org/10.1038/nature01660
Harvey, N., Dennison, E., & Cooper, C. (2010). Osteoporosis: impact on health and economics. Nature reviews. Rheumatology, 6(2), 99–105. https://doi.org/10.1038/nrrheum.2009.260
Khosla, S., Amin, S., & Orwoll, E. (2008). Osteoporosis in men. Endocrine reviews, 29(4), 441–464. https://doi.org/10.1210/er.2008-0002
Lirani-Galvão, A. P., & Lazaretti-Castro, M. (2010). Physical approach for prevention and treatment of osteoporosis. Arquivos brasileiros de endocrinologia e metabologia, 54(2), 171–178. https://doi.org/10.1590/s0004-27302010000200013
Luvizuto, E. R., Dias, S. M., Queiroz, T. P., Okamoto, T., Garcia, I. R., Jr, Okamoto, R., & Dornelles, R. C. (2010). Osteocalcin immunolabeling during the alveolar healing process in ovariectomized rats treated with estrogen or raloxifene. Bone, 46(4), 1021–1029. https://doi.org/10.1016/j.bone.2009.12.016
Merheb, J., Temmerman, A., Rasmusson, L., Kübler, A., Thor, A., & Quirynen, M. (2016). Influence of Skeletal and Local Bone Density on Dental Implant Stability in Patients with Osteoporosis. Clinical implant dentistry and related research, 18(2), 253–260. https://doi.org/10.1111/cid.12290
Nishide, Y., Tousen, Y., Tadaishi, M., Inada, M., Miyaura, C., Kruger, M. C., & Ishimi, Y. (2015). Combined Effects of Soy Isoflavones and β-Carotene on Osteoblast Differentiation. International journal of environmental research and public health, 12(11), 13750–13761. https://doi.org/10.3390/ijerph121113750
Oliveira, D., Hassumi, J. S., Gomes-Ferreira, P. H., Polo, T. O., Ferreira, G. R., Faverani, L. P., & Okamoto, R. (2017). Short term sodium alendronate administration improves the peri-implant bone quality in osteoporotic animals. Journal of applied oral science : revista FOB, 25(1), 42–52. https://doi.org/10.1590/1678-77572016-0165
Parfitt, A. M., Drezner, M. K., Glorieux, F. H., Kanis, J. A., Malluche, H., Meunier, P. J., Ott, S. M., & Recker, R. R. (1987). Bone histomorphometry: standardization of nomenclature, symbols, and units. Report of the ASBMR Histomorphometry Nomenclature Committee. Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research, 2(6), 595–610. https://doi.org/10.1002/jbmr.5650020617
Polkowski, K., & Mazurek, A. P. (2000). Biological properties of genistein. A review of in vitro and in vivo data. Acta poloniae pharmaceutica, 57(2), 135–155.
Queiroz, T. P., Souza, F. A., Okamoto, R., Margonar, R., Pereira-Filho, V. A., Garcia Júnior, I. R., & Vieira, E. H. (2008). Evaluation of immediate bone-cell viability and of drill wear after implant osteotomies: immunohistochemistry and scanning electron microscopy analysis. Journal of oral and maxillofacial surgery : official journal of the American Association of Oral and Maxillofacial Surgeons, 66(6), 1233–1240. https://doi.org/10.1016/j.joms.2007.12.037
Ramalho-Ferreira, G., Faverani, L. P., Grossi-Oliveira, G. A., Okamoto, T., & Okamoto, R. (2015). Alveolar bone dynamics in osteoporotic rats treated with raloxifene or alendronate: confocal microscopy analysis. Journal of biomedical optics, 20(3), 038003. https://doi.org/10.1117/1.JBO.20.3.038003
Ramalho-Ferreira, G., Faverani, L. P., Prado, F. B., Garcia, I. R., Jr, & Okamoto, R. (2015). Raloxifene enhances peri-implant bone healing in osteoporotic rats. International journal of oral and maxillofacial surgery, 44(6), 798–805. https://doi.org/10.1016/j.ijom.2015.02.018
Shapurian, T., Damoulis, P. D., Reiser, G. M., Griffin, T. J., & Rand, W. M. (2006). Quantitative evaluation of bone density using the Hounsfield index. The International journal of oral & maxillofacial implants, 21(2), 290–297.
Von Wowern, N., & Kollerup, G. (1992). Symptomatic osteoporosis: a risk factor for residual ridge reduction of the jaws. The Journal of prosthetic dentistry, 67(5), 656–660. https://doi.org/10.1016/0022-3913(92)90165-7
Wei, H., Saladi, R., Lu, Y., Wang, Y., Palep, S. R., Moore, J., Phelps, R., Shyong, E., & Lebwohl, M. G. (2003). Isoflavone genistein: photoprotection and clinical implications in dermatology. The Journal of nutrition, 133(11 Suppl 1), 3811S–3819S. https://doi.org/10.1093/jn/133.11.3811S
Weitzmann, M. N., & Pacifici, R. (2006). Estrogen deficiency and bone loss: an inflammatory tale. The Journal of clinical investigation, 116(5), 1186–1194. https://doi.org/10.1172/JCI28550
Yogui, F. C., Momesso, G., Faverani, L. P., Polo, T., Ramalho-Ferreira, G., Hassumi, J. S., Rossi, A. C., Freire, A. R., Prado, F. B., & Okamoto, R. (2018). A SERM increasing the expression of the osteoblastogenesis and mineralization-related proteins and improving quality of bone tissue in an experimental model of osteoporosis. Journal of applied oral science : revista FOB, 26, e20170329. https://doi.org/10.1590/1678-7757-2017-0329
Zhang, X., Shu, X. O., Gao, Y. T., Yang, G., Li, Q., Li, H., Jin, F., & Zheng, W. (2003). Soy food consumption is associated with lower risk of coronary heart disease in Chinese women. The Journal of nutrition, 133(9), 2874–2878. https://doi.org/10.1093/jn/133.9.2874
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Naara Gabriela Monteiro; Fábio Roberto De Souza Batista ; Maria Isabela Lopes Gandolfo ; Leonardo Perez Faverani; Letícia Pitol Palin ; Gabriel Mulinari-Santos; Pedro Henrique Silva Gomes Ferreira; Francisley Ávila Souza; Roberta Okamoto
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.