Genistein acts in bone metabolism and improves peri-implant healing in rats with estrogen deficiency

Authors

DOI:

https://doi.org/10.33448/rsd-v10i5.15061

Keywords:

Bone; Osteoporosis; Genistein; Dental implants.

Abstract

The present study aimed to evaluate the peri-implantar bone healing in the presence of genistein treatment in ovariectomized rats. Thirty female rats with 4 months old were divided into 3 groups according to the experimental condition and the drug treatment: SHAM (rats submitted to the fictional surgery and gavage with 0.9% saline solution); OVX (rats submitted to bilateral ovariectomy and gavage with 0.9% saline solution); OVX GEN (rats submitted to bilateral ovariectomy and gavage with 1mg/day of genistein). 60 implants were installed, with two implants in each animal. The calcified group was subjected microcomputerized tomography and the parameters analysed was bone volume per tissue volume (BV/TV) and connective density (Cnn.Dn). The decalcified samples were evaluated through immunolabeling analysis, in order to detect the presence of RUNX2, Alkaline Phosphatase, Osteocalcin, Osteopontin and TRAP. All the quantitative data were submitted to the normality curve to determine the most adequate test. The significance level of p<0.05 was considered for all tests. The morphometric analysis of the OVX GEN group showed higher percentage of bone volume and lower connective density when compared with OVX. Immunohistochemical analysis favors expression. For the markers that positively label osteoblastic activity. This study shows that genistein therapy improves peri-implant bone healing in ovariectomized rats.

References

An, J., Yang, H., Zhang, Q., Liu, C., Zhao, J., Zhang, L., & Chen, B. (2016). Natural products for treatment of osteoporosis: The effects and mechanisms on promoting osteoblast-mediated bone formation. Life sciences, 147, 46–58. https://doi.org/10.1016/j.lfs.2016.01.024

Cepeda, S. B., Sandoval, M. J., Crescitelli, M. C., Rauschemberger, M. B., & Massheimer, V. L. (2020). The isoflavone genistein enhances osteoblastogenesis: signaling pathways involved. Journal of physiology and biochemistry, 76(1), 99–110. https://doi.org/10.1007/s13105-019-00722-3

Cepeda, S. B., Sandoval, M. J., Rauschemberger, M. B., & Massheimer, V. L. (2017). Beneficial role of the phytoestrogen genistein on vascular calcification. The Journal of nutritional biochemistry, 50, 26–37. https://doi.org/10.1016/j.jnutbio.2017.08.009

Dempster, D. W., Compston, J. E., Drezner, M. K., Glorieux, F. H., Kanis, J. A., Malluche, H., Meunier, P. J., Ott, S. M., Recker, R. R., & Parfitt, A. M. (2013). Standardized nomenclature, symbols, and units for bone histomorphometry: a 2012 update of the report of the ASBMR Histomorphometry Nomenclature Committee. Journal of bone and mineral research: the official journal of the American Society for Bone and Mineral Research, 28(1), 2–17. https://doi.org/10.1002/jbmr.1805

dos Santos, P. L., Queiroz, T. P., Margonar, R., Gomes de Souza Carvalho, A. C., Okamoto, R., de Souza Faloni, A. P., & Garcia, I. R., Jr (2013). Guided implant surgery: what is the influence of this new technique on bone cell viability?. Journal of oral and maxillofacial surgery : official journal of the American Association of Oral and Maxillofacial Surgeons, 71(3), 505–512. https://doi.org/10.1016/j.joms.2012.10.017

Drage, N. A., Palmer, R. M., Blake, G., Wilson, R., Crane, F., & Fogelman, I. (2007). A comparison of bone mineral density in the spine, hip and jaws of edentulous subjects. Clinical oral implants research, 18(4), 496–500. https://doi.org/10.1111/j.1600-0501.2007.01379.x

Drake, M. T., & Khosla, S. (2012). Male osteoporosis. Endocrinology and metabolism clinics of North America, 41(3), 629–641. https://doi.org/10.1016/j.ecl.2012.05.001

Evans, H. M., & Long, J. A. (1922). Characteristic Effects upon Growth, Oestrus and Ovulation Induced by the Intraperitoneal Administration of Fresh Anterior Hypophyseal Substance. Proceedings of the National Academy of Sciences of the United States of America, 8(3), 38–39. https://doi.org/10.1073/pnas.8.3.38

Fanti, P., Monier-Faugere, M. C., Geng, Z., Schmidt, J., Morris, P. E., Cohen, D., & Malluche, H. H. (1998). The phytoestrogen genistein reduces bone loss in short-term ovariectomized rats. Osteoporosis international : a journal established as result of cooperation between the European Foundation for Osteoporosis and the National Osteoporosis Foundation of the USA, 8(3), 274–281. https://doi.org/10.1007/s001980050065

Faverani, L. P., Polo, T., Ramalho-Ferreira, G., Momesso, G., Hassumi, J. S., Rossi, A. C., Freire, A. R., Prado, F. B., Luvizuto, E. R., Gruber, R., & Okamoto, R. (2018). Raloxifene but not alendronate can compensate the impaired osseointegration in osteoporotic rats. Clinical oral investigations, 22(1), 255–265. https://doi.org/10.1007/s00784-017-2106-2

Fu, S. W., Zeng, G. F., Zong, S. H., Zhang, Z. Y., Zou, B., Fang, Y., Lu, L., & Xiao, D. Q. (2014). Systematic review and meta-analysis of the bone protective effect of phytoestrogens on osteoporosis in ovariectomized rats. Nutrition research (New York, N.Y.), 34(6), 467–477. https://doi.org/10.1016/j.nutres.2014.05.003

Giro, G., Chambrone, L., Goldstein, A., Rodrigues, J. A., Zenóbio, E., Feres, M., Figueiredo, L. C., Cassoni, A., & Shibli, J. A. (2015). Impact of osteoporosis in dental implants: A systematic review. World journal of orthopedics, 6(2), 311–315. https://doi.org/10.5312/wjo.v6.i2.311

Harada, S., & Rodan, G. A. (2003). Control of osteoblast function and regulation of bone mass. Nature, 423(6937), 349–355. https://doi.org/10.1038/nature01660

Harvey, N., Dennison, E., & Cooper, C. (2010). Osteoporosis: impact on health and economics. Nature reviews. Rheumatology, 6(2), 99–105. https://doi.org/10.1038/nrrheum.2009.260

Khosla, S., Amin, S., & Orwoll, E. (2008). Osteoporosis in men. Endocrine reviews, 29(4), 441–464. https://doi.org/10.1210/er.2008-0002

Lirani-Galvão, A. P., & Lazaretti-Castro, M. (2010). Physical approach for prevention and treatment of osteoporosis. Arquivos brasileiros de endocrinologia e metabologia, 54(2), 171–178. https://doi.org/10.1590/s0004-27302010000200013

Luvizuto, E. R., Dias, S. M., Queiroz, T. P., Okamoto, T., Garcia, I. R., Jr, Okamoto, R., & Dornelles, R. C. (2010). Osteocalcin immunolabeling during the alveolar healing process in ovariectomized rats treated with estrogen or raloxifene. Bone, 46(4), 1021–1029. https://doi.org/10.1016/j.bone.2009.12.016

Merheb, J., Temmerman, A., Rasmusson, L., Kübler, A., Thor, A., & Quirynen, M. (2016). Influence of Skeletal and Local Bone Density on Dental Implant Stability in Patients with Osteoporosis. Clinical implant dentistry and related research, 18(2), 253–260. https://doi.org/10.1111/cid.12290

Nishide, Y., Tousen, Y., Tadaishi, M., Inada, M., Miyaura, C., Kruger, M. C., & Ishimi, Y. (2015). Combined Effects of Soy Isoflavones and β-Carotene on Osteoblast Differentiation. International journal of environmental research and public health, 12(11), 13750–13761. https://doi.org/10.3390/ijerph121113750

Oliveira, D., Hassumi, J. S., Gomes-Ferreira, P. H., Polo, T. O., Ferreira, G. R., Faverani, L. P., & Okamoto, R. (2017). Short term sodium alendronate administration improves the peri-implant bone quality in osteoporotic animals. Journal of applied oral science : revista FOB, 25(1), 42–52. https://doi.org/10.1590/1678-77572016-0165

Parfitt, A. M., Drezner, M. K., Glorieux, F. H., Kanis, J. A., Malluche, H., Meunier, P. J., Ott, S. M., & Recker, R. R. (1987). Bone histomorphometry: standardization of nomenclature, symbols, and units. Report of the ASBMR Histomorphometry Nomenclature Committee. Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research, 2(6), 595–610. https://doi.org/10.1002/jbmr.5650020617

Polkowski, K., & Mazurek, A. P. (2000). Biological properties of genistein. A review of in vitro and in vivo data. Acta poloniae pharmaceutica, 57(2), 135–155.

Queiroz, T. P., Souza, F. A., Okamoto, R., Margonar, R., Pereira-Filho, V. A., Garcia Júnior, I. R., & Vieira, E. H. (2008). Evaluation of immediate bone-cell viability and of drill wear after implant osteotomies: immunohistochemistry and scanning electron microscopy analysis. Journal of oral and maxillofacial surgery : official journal of the American Association of Oral and Maxillofacial Surgeons, 66(6), 1233–1240. https://doi.org/10.1016/j.joms.2007.12.037

Ramalho-Ferreira, G., Faverani, L. P., Grossi-Oliveira, G. A., Okamoto, T., & Okamoto, R. (2015). Alveolar bone dynamics in osteoporotic rats treated with raloxifene or alendronate: confocal microscopy analysis. Journal of biomedical optics, 20(3), 038003. https://doi.org/10.1117/1.JBO.20.3.038003

Ramalho-Ferreira, G., Faverani, L. P., Prado, F. B., Garcia, I. R., Jr, & Okamoto, R. (2015). Raloxifene enhances peri-implant bone healing in osteoporotic rats. International journal of oral and maxillofacial surgery, 44(6), 798–805. https://doi.org/10.1016/j.ijom.2015.02.018

Shapurian, T., Damoulis, P. D., Reiser, G. M., Griffin, T. J., & Rand, W. M. (2006). Quantitative evaluation of bone density using the Hounsfield index. The International journal of oral & maxillofacial implants, 21(2), 290–297.

Von Wowern, N., & Kollerup, G. (1992). Symptomatic osteoporosis: a risk factor for residual ridge reduction of the jaws. The Journal of prosthetic dentistry, 67(5), 656–660. https://doi.org/10.1016/0022-3913(92)90165-7

Wei, H., Saladi, R., Lu, Y., Wang, Y., Palep, S. R., Moore, J., Phelps, R., Shyong, E., & Lebwohl, M. G. (2003). Isoflavone genistein: photoprotection and clinical implications in dermatology. The Journal of nutrition, 133(11 Suppl 1), 3811S–3819S. https://doi.org/10.1093/jn/133.11.3811S

Weitzmann, M. N., & Pacifici, R. (2006). Estrogen deficiency and bone loss: an inflammatory tale. The Journal of clinical investigation, 116(5), 1186–1194. https://doi.org/10.1172/JCI28550

Yogui, F. C., Momesso, G., Faverani, L. P., Polo, T., Ramalho-Ferreira, G., Hassumi, J. S., Rossi, A. C., Freire, A. R., Prado, F. B., & Okamoto, R. (2018). A SERM increasing the expression of the osteoblastogenesis and mineralization-related proteins and improving quality of bone tissue in an experimental model of osteoporosis. Journal of applied oral science : revista FOB, 26, e20170329. https://doi.org/10.1590/1678-7757-2017-0329

Zhang, X., Shu, X. O., Gao, Y. T., Yang, G., Li, Q., Li, H., Jin, F., & Zheng, W. (2003). Soy food consumption is associated with lower risk of coronary heart disease in Chinese women. The Journal of nutrition, 133(9), 2874–2878. https://doi.org/10.1093/jn/133.9.2874

Downloads

Published

09/05/2021

How to Cite

MONTEIRO, N. G.; DE SOUZA BATISTA , F. R. .; GANDOLFO , M. I. L. .; FAVERANI, L. P. .; PITOL PALIN , L. .; MULINARI-SANTOS, G.; GOMES FERREIRA, P. H. S.; SOUZA, F. Ávila .; OKAMOTO, R. . Genistein acts in bone metabolism and improves peri-implant healing in rats with estrogen deficiency. Research, Society and Development, [S. l.], v. 10, n. 5, p. e36410515061, 2021. DOI: 10.33448/rsd-v10i5.15061. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/15061. Acesso em: 15 jan. 2025.

Issue

Section

Health Sciences