Quantification of biomass and litter in agroforestry system with sour orange cultivation in the Brazilian Amazon

Authors

DOI:

https://doi.org/10.33448/rsd-v10i5.15165

Keywords:

Citrus aurantium; Ingá edulis; Swietenia macrophylla.

Abstract

The knowledge of the quantity and composition of the deposited biomass is useful to plan the nutrient management of cultivations in agroforestry systems. The objective of this work was to evaluate the production of biomass and litter in two agroforestry systems with organic and conventional cultivations of sour orange. The areas use models of orange production by monoculture and under agroforestry systems: the first agroforestry system is composed of rows of brazilian mahogany (Swietenia macrophylla K.) accompanied by double rows of orange trees (Citrus aurantium L.); the second system is composed of rows of ingá (Ingá edulis Mart.) accompanied by double rows of orange trees. A completely randomized design was used in a 10x2 factorial scheme, with 4 replications. The locations within the management systems were organized as follows: agroforestry system composed of mahogany trees; Ingá trees agroforestry system; conventional sour orange monoculture system. The areas that the biomass and litter were collected in the locations in the systems were: between plants in the row for cultivation of forest species that make up the system; between rows of the forest species row and orange cultivation row; between plants in the orange cultivation row; between rows of the double row of orange cultivation. Two periods were analyzed in the experiment: the months of lowest and highest rainfall. Agroforestry systems promoted greater biomass and litter to the soil compared to monoculture. In this way, they were configured as a beneficial practice for the soil in sour orange crops in the Brazilian Amazon.

References

Alvares, C. A., Stape, J. L., Sentelhas, P. C., Goncalves, J. L. M. & Sparovek, G. (2013). Koppen’s climate classification map for Brazil. Meteorologische Zeitschrift, 22, 711-728.

Bendel, J. & Stephens, T. (2020). Turning to international litigation to protect the Amazon? RECIEL. Early View.

Bradford, M. A., Jones, T. H., Bardgett, R. D., Black, H. I. J., Boag, B. & Bonkowski, M. et al. (2002). Impactos de la composición de las comunidades de fauna del suelo en los ecosistemas de pastizales modelo. Science, 298, 615–617.

Casagrande, E., Recanati, F., Rulli, M. C., Bevacqua, D. & Melia, P. (2021). Water balance partitioning for ecosystem service assessment. A case study in the Amazon. Ecological Indicators, 121, 107-155.

Celentano, D., Zahawi, R. A., Finegan, B., Casanoves, F., Ostertag, R., Cole, R. J. & Holl, K. D. (2011). Restauración ecológica de bosques tropicales en Costa Rica: efecto de varios modelos en la producción, acumulación y descomposición de hojarasca. Revista de Biología Tropical, 5(3), 1323-1336.

CONAB. (2021). Companhia Nacional de Abastecimento. Laranja – Análise mensal. Brasília: Conab. http://www.conab.gov.br

Costa, B. C., Suzuki, P. M., Martins, W. B. R., Andrade, V. M. S. & Oliveira, F. A. (2017). Dinâmica da massa seca e propriedades químicas da liteira em Virola surinamensis e floresta sucessional na Amazônia oriental. Revista Verde de Agroecologia e Desenvolvimento Sustentável, 12(1), 23-28.

Correia, R. G., Martins, W. B. R., Oliveira, F. A., Dionisio, L. F. S., Neves, R. L. P. & Batista, T. F. V. (2018). Production and decomposition of litter in different mahogany (Swietenia macrophylla King) cropping systems. Brazilian Journal of Wood Science, 9(2), 103-110.

FAO. (2021). Food and Agriculture Organization of the United Nations. Production quantities of Oranges by country. http://www.fao.org/

Fernandes, F. C. S. & Scaramuzza, W. L. M. P. (2007). Produção e decomposição de liteira em fragmento florestal em Campo Verde, MT. Revista de Ciências Agrárias, 1(1).

Gazolla-Neto, A., Aumonde, T. Z., Pedó, T., Olsen, D. & Villela, F. A. (2013). Ação de níveis de luminosidade sobre o crescimento de plantas de maria-pretinha (Solanum americanum Mill.). Revista Brasileira de Biociências, 11(1), 88-92.

Hansen, K., Vesterdal, L., Schmidt, I. K., Gundersen, P., Sevel, L., Basturp-Birk, A., Pedersen, L. B. & Bille-Hansen, J. (2009). Litterfall and nutrient return in five tree species in a common garden experiment. Forest Ecology and Management, 257, 2133–2144.

Kotowska, M. M., Leuschner, C., Triadiati, T. & Hertel, D. (2016). Conversion of tropical lowland forest reduces nutrient return through litterfall and alters nutrient use efficiency and seasonality of net primary production. Oecologica, 180, 601-618.

Mvondo, E. A., Ndo, E. G. D., Bieng, M. A. N., Ambang, Z., Manga, B., Cilas, C., Manga, M. L. T. & Nomo, L. B. (2019). Assessment of the interaction between the spatial organization of citrus trees populations in cocoa agroforests and Phytophthora foot rot disease of citrus severity. Agroforestry System, 93, 493–502.

Oro, F. Z., Bonnot, F., Ngo-Bieng, M. A., Delaitre, E., Dufour, B. P., Ametefe, K. E., Mississo, E., Wegbe, K., Muller, E. & Cilas, C. (2012). Spatiotemporal pattern analysis of Cacao swollen shoot virus in experimental plots in Togo. Plant Pathology, 61(6), 1043–1051.

Perez-Flores, J., Perez, A. A., Suarez, Y. P., Bolaina, V. C. & Quiroga, A. L. (2018). Leaf litter and its nutrient contribution in the cacao agroforestry system. Agroforestry System, 92, 365–374.

Poorter, H., Niinemets, U., Ntagkas, N., Siebenkas, A., Maarit, M., Matsubara, S. & Pons, T.L. (2019). A meta-analysis of plant responses to light intensity for 70 traits ranging from molecules to whole plant performance. New Phytologist, 223, 1073–1105.

Ratnadass, A., Fernandes, P., Avelino, J. & Habib, R. (2012). Plant species diversity for sustainable management of crop pests and diseases in agroecosystems. Agronomy for Sustainability Development, 32, (1), 273–303.

Schlesinger, W. H. & Andrews, J. A. (2000). Soil respiration and the global carbon cycle. Biogeochemistry, 48, 7–20.

Souza, F. F. C., Mathai, P. P., Pauliquevis, T., Balsanelli, E., Pedrosa, F. O. & Souza, E. M. (2021). Influence of seasonality on the aerosol microbiome of the Amazon rainforest. Science of the Total Environment, 760(144092).

Stocker, C. M., Bamberg, A. L., Stump, L., Monteiro, A. B., Cardoso, J. H. & Lima, A. C. R. (2020). Short-term soil physical quality improvements promoted by an agroforestry system. Agroforestry System, 94, 2053–2064.

Szott, L. T., Palm, C. A. & Davey, C. B. (1994). Biomass and litter accumulation under managed and natural tropical fallows. Forest Ecology and Management, 67, 177-190.

Taiz, L., Zeiger, E., Moller, I. & Murphy, A. (2017). Plant physiology and development. (6a ed.), Artmed.

Tao, J., Liu, X., Liang, Y., Niu, J., Xiao, Y. & Gu, Y., et al. (2017). Maize growth responses to soil microbes and soil properties after fertilization with different green manures. Applied Microbiology and Biotechnology, 101, 1289–1299.

Tonin, A. M., Gonçalves, J. F., Bambi, P., Couceiro, S. R. M., Feitoza, L. A. M. & Fontana, L. E. et al. (2017). Plant litter dynamics in the forest-stream interface: precipitation is a major control across tropical biomes. Scientific Reports, 7(e10799).

USDA. (2021). United States Department of Agriculture. Citrus: World Markets and Trade. Foreign Agricultural Service. Available in: https://www.usda.gov/

Xu, Q., Chen, L., Ruan, X., Chen, D., Zhu, A. & Chen, C. et al. (2013). The draft genome of sweet orange (Citrus sinensis). Nature Genetics, 45(1), 59-67.

Zalamea, M. & González, G. (2008). Leaffall phenology in a subtropical wet forest in Puerto Rico: from species to community patterns. Biotropica, 40(3), 295-304.

Zhang, H., Yuan, W., Dong, W. & Liu, S. (2014). Seasonal patterns of litterfall in forest ecosystem worldwide. Ecological Complexity, 20, 240-247.

Downloads

Published

11/05/2021

How to Cite

ALVES FILHO, P. P. da C. .; KATO, O. R. .; GALVÃO, J. R. .; LEITE, R. da C. .; OLIVEIRA, L. de A. .; SOUZA, J. C. de . Quantification of biomass and litter in agroforestry system with sour orange cultivation in the Brazilian Amazon . Research, Society and Development, [S. l.], v. 10, n. 5, p. e41110515165, 2021. DOI: 10.33448/rsd-v10i5.15165. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/15165. Acesso em: 8 jan. 2025.

Issue

Section

Agrarian and Biological Sciences