Bioactivity of Ti6Al4V alloy with bioglass and corrosion protection by silane coating

Authors

DOI:

https://doi.org/10.33448/rsd-v10i6.15308

Keywords:

Biocompatibility; Bioglass; Corrosion; Silane Film; Ti6Al4V.

Abstract

The Ti6Al4V alloy is usually employed as a biomaterial, however, when in use, exhibits a few drawbacks such as corrosion, caused by the release of aluminum and vanadium ions besides the bioinert behavior. Bioactive coatings offer a barrier effect and bioactivity, promoting biocompatibility and osseointegration processes. The present work aims to study the biocompatibility behavior of a bioglass-containing silane film deposited on a titanium alloy (Ti6Al4V) substrate. The effect of the surface roughness of the metallic substrate was also evaluated. Film/substrate systems were characterized as their morphological, chemical, physical, electrochemical behavior, and cell cytotoxicity and cell viability. The main results pointed out that silane films augment corrosion resistance of titanium alloy substrates. The biological results indicated a growth of osteoblast cells (MG-63), for all the test conditions. The bioglass film deposited on the ground substrate exhibits the highest cell density.

Author Biographies

Patricia Marcolin, Universidade de Caxias do Sul

Universidade de Caxias do Sul

Caroline Olivieri da Silva Frozza, Universidade de Caxias do Sul

Universidade de Caxias do Sul

João Antonio Pêgas Henriques, Universidade de Caxias do Sul

Universidade de Caxias do Sul

Sandra Raquel Kunst, FEEVALE University

FEEVALE University

Murilo Camuri Crovace, Federal University of São Carlos

Federal University of São Carlos

Mariana Roesch Ely , Universidade de Caxias do Sul

Universidade de Caxias do Sul

Lucia Vieira, University of Paraiba Valley

University of Paraiba Valley

María Cristina Moré Farias, Universidade de Caxias do Sul

Universidade de Caxias do Sul

Rosmary Nichele Brandalise, Universidade de Caxias do Sul

Universidade de Caxias do Su

References

Ahmed, A. A., Mhaede, M., Wollmann, M., & Wagner, L. (2016). Effect of micro shot peening on the mechanical properties and corrosion behavior of two microstructure Ti-6Al-4V alloy.

Applied Surface Science, 363, 50–58. https://doi.org/10.1016/j.apsusc.2015.12.019

Andrade, A. D., Marinho, C. F., Barcelos, M., Zorzal, M. B., & Conz, M. B. (2007). Bone biology: the review of literature. 4(6), 659–662.

Asri, R. I. M., Harun, W. S. W., Samykano, M., Lah, N. A. C., Ghani, S. A. C., Tarlochan, F., & Raza, M. R. (2017). Corrosion and surface modification on biocompatible metals: A review. Materials Science and Engineering C, 77, 1261–1274. https://doi.org/10.1016/j.msec.2017.04.102

Aydınoğlu, A., & Yoruç, A. B. H. (2017). Effects of silane-modified fillers on properties of dental composite resin. Materials Science and Engineering C, 79, 382–389. https://doi.org/10.1016/j.msec.2017.04.151

Baxter, L. C., Frauchiger, V., Textor, M., Ap Gwynn, I., Richards, R. G., Bongrand, P., & Brunette, D. (2002). Fibroblast and osteoblast adhesion and morphology on calcium phosphatesurfaces. European Cells and Materials, 4(0), 1–17. https://doi.org/10.22203/eCM.v004a01

Biggs, M. J. P., Richards, R. G., & Dalby, M. J. (2010). Nanotopographical modification: A regulator of cellular function through focal adhesions. Nanomedicine: Nanotechnology, Biology, and Medicine, 6(5), 619–633. https://doi.org/10.1016/j.nano.2010.01.009

Certhoux, E., Ansart, F., Turq, V., Bonino, J. P., Sobrino, J. M., Garcia, J., & Reby, J. (2013). New sol-gel formulations to increase the barrier effect of a protective coating against the corrosion of steels. Progress in Organic Coatings, 76(1), 165–172. https://doi.org/10.1016/j.porgcoat.2012.09.002

Chen, Q., & Thouas, G. A. (2015). Metallic implant biomaterials. Materials Science and Engineering R: Reports, 87, 1–57. https://doi.org/10.1016/j.mser.2014.10.001

Chiu, K. Y., Wong, M. H., Cheng, F. T., & Man, H. C. (2007). Characterization and corrosion studies of titania-coated NiTi prepared by sol-gel technique and steam crystallization. Applied Surface Science, 253(16), 6762–6768. https://doi.org/10.1016/j.apsusc.2007.01.121

Chowdhury, S. S., Pandey, P. R., Kumar, R., & Roy, S. (2017). Effect of shape of protrusions and roughness on the hydrophilicity of a surface. Chemical Physics Letters, 685, 34–39. https://doi.org/10.1016/j.cplett.2017.07.015

Cremasco, A., Messias, A. D., Esposito, A. R., Duek, E. A. D. R., & Caram, R. (2011). Effects of alloying elements on the cytotoxic response of titanium alloys. Materials Science and Engineering C, 31(5), 833–839. https://doi.org/10.1016/j.msec.2010.12.013

Dalby, M. J., Gadegaard, N., & Oreffo, R. O. C. (2014). Harnessing nanotopography and integrin-matrix interactions to influence stem cell fate. Nature Materials, 13(6), 558–569. https://doi.org/10.1038/nmat3980

De Graeve, I., Vereecken, J., Franquet, A., Van Schaftinghen, T., & Terryn, H. (2007). Silane coating of metal substrates: Complementary use of electrochemical, optical and thermal analysis for the evaluation of film properties. Progress in Organic Coatings, 59(3), 224–229. https://doi.org/10.1016/j.porgcoat.2006.09.006

El-Ghannam, A., & Ducheyne, P. (2017). 1.9 Bioactive Ceramics☆. In P. Ducheyne (Ed.), Comprehensive Biomaterials II (pp. 204–234). Elsevier. https://doi.org/https://doi.org/10.1016/B978-0-12-803581-8.10169-9

Fu, T., Wu, X. M., Wu, F., Luo, M., Dong, B. H., & Ji, Y. (2012). Surface modification of NiTi alloy by sol-gel derived porous TiO2 film. Transactions of Nonferrous Metals Society of China (English Edition), 22(7), 1661–1666. https://doi.org/10.1016/S1003-6326(11)61370-8

Gadelmawla, E. S., Koura, M. M., Maksoud, T. M. A., Elewa, I. M., & Soliman, H. H. (2002). Roughness parameters. Journal of Materials Processing Technology, 123(1), 133–145. https://doi.org/10.1016/S0924-0136(02)00060-2

Gittens, R. A., McLachlan, T., Olivares-Navarrete, R., Cai, Y., Berner, S., Tannenbaum, R., Schwartz, Z., Sandhage, K. H., & Boyan, B. D. (2011). The effects of combined micron-/submicron-scale surface roughness and nanoscale features on cell proliferation and differentiation. Biomaterials, 32(13), 3395–3403. https://doi.org/10.1016/j.biomaterials.2011.01.029

Hallab, N. J., Jacobs, J. J., & Katz, J. L. (2004). Orthopedic Applications. In B. D. Ratner, A. S. Hoffman, F. J. Schoen, & J. E. Lemons (Eds.), Biomaterials Science: An Introduction to Materials in Medicine (2nd ed., pp. 527–555). Elsevier Academic Press.

Harada, R., Takemoto, S., Kinoshita, H., Yoshinari, M., & Kawada, E. (2016). Influence of sulfide concentration on the corrosion behavior of titanium in a simulated oral environment. Materials Science and Engineering C, 62, 268–273. https://doi.org/10.1016/j.msec.2016.01.065

Hotchkiss, K. M., Reddy, G. B., Hyzy, S. L., Schwartz, Z., Boyan, B. D., & Olivares-Navarrete, R. (2016). Titanium surface characteristics, including topography and wettability, alter macrophage activation. Acta Biomaterialia, 31, 425–434. https://doi.org/10.1016/j.actbio.2015.12.003

Huang, Q., Elkhooly, T. A., Liu, X., Zhang, R., Yang, X., Shen, Z., & Feng, Q. (2016). Effects of hierarchical micro/nano-topographies on the morphology, proliferation and differentiation of osteoblast-like cells. Colloids and Surfaces B: Biointerfaces, 145, 37–45. https://doi.org/10.1016/j.colsurfb.2016.04.031

Ibrahim, M. Z., Sarhan, A. A. D., Yusuf, F., & Hamdi, M. (2017). Biomedical materials and techniques to improve the tribological, mechanical and biomedical properties of orthopedic implants – A review article. Journal of Alloys and Compounds, 714, 636–667. https://doi.org/10.1016/j.jallcom.2017.04.231

Köche, J. C. (2011). Fundamentos de metodologia científica: Teoria da ciência e iniciação à pesquisa. Petrópolis, RJ: Vozes.

Kokubo, T., & Takadama, H. (2006). How useful is SBF in predicting in vivo bone bioactivity? Biomaterials, 27(15), 2907–2915. https://doi.org/10.1016/j.biomaterials.2006.01.017

Kota, A. K., Kwon, G., & Tuteja, A. (2014). The design and applications of superomniphobic surfaces. NPG Asia Materials, 6(6), 1–16. https://doi.org/10.1038/am.2014.34

Kunst, S. R., Cardoso, H. R. P., Beltrami, L. V. R., Oliveira, C. T., Menezes, T. L., Ferreira, J. Z., & Malfatti, C. de F. (2015). New Sol-gel Formulations to Increase the Barrier Effect of a Protective Coating Against the Corrosion and Wear of Galvanized Steel. Materials Research, 18(1), 138–150. https://doi.org/10.1590/1516-1439.288914

Kunst, S. R., Korb, M. de A., Menezes, T. L., Oliveira, C. T., Malfatti, C. de F., & Tessaro, G. (2013). Influence of the curing process of the hybrid films on the performance of coatings obtained by epoxy painting. Metallurgy and Materials, 66(3), 309–316. https://doi.org/10.1590/S0370-44672013000300007

Kurella, A., & Dahotre, N. B. (2005). Surface modification for bioimplants: The role of laser surface engineering. In Journal of Biomaterials Applications (Vol. 20, Issue 1). https://doi.org/10.1177/0885328205052974

Kuscer, D., Kovač, J., Kosec, M., & Andriesen, R. (2008). The effect of the valence state of titanium ions on the hydrophilicity of ceramics in the titanium-oxygen system. Journal of the European Ceramic Society, 28(3), 577–584. https://doi.org/10.1016/j.jeurceramsoc.2007.07.014

Liang, J., Hu, Y., Wu, Y., & Chen, H. (2014). Facile formation of superhydrophobic silica-based surface on aluminum substrate with tetraethylorthosilicate and vinyltriethoxysilane as co-precursor and its corrosion resistant performance in corrosive NaCl aqueous solution. Surface and Coatings Technology, 240, 145–153. https://doi.org/10.1016/j.surfcoat.2013.12.028

Malaval, L., Liu, F., Roche, P., & Aubin, J. E. (1999). Kinetics of osteoprogenitor proliferation and osteoblast differentiation in vitro. Journal of Cellular Biochemistry, 74(4), 616–627. https://doi.org/10.1002/(SICI)1097-4644(19990915)74:4<616::AID-JCB11>3.0.CO;2-Q

Mathew, M. T., Abbey, S., Hallab, N. J., Hall, D. J., Sukotjo, C., & Wimmer, M. A. (2012). Influence of pH on the tribocorrosion behavior of CpTi in the oral environment: Synergistic interactions of wear and corrosion. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 100 B(6), 1662–1671. https://doi.org/10.1002/jbm.b.32735

Mattila, P. K., & Lappalainen, P. (2008). Filopodia: Molecular architecture and cellular functions. Nature Reviews Molecular Cell Biology, 9(6), 446–454. https://doi.org/10.1038/nrm2406

Mohammadloo, H. E., Sarabi, A. A., Sabbagh Alvani, A. A., Sameie, H., & Salimi, R. (2012). Nano-ceramic hexafluorozirconic acid based conversion thin film: Surface characterization and electrochemical study. Surface and Coatings Technology, 206(19–20), 4132–4139. https://doi.org/10.1016/j.surfcoat.2012.04.009

Murugan, N., Kavitha, L., Shinyjoy, E., Rajeswari, D., Vimala, K., Kannan, S., & Gopi, D. (2015). Smart rose flower like bioceramic/metal oxide dual layer coating with enhanced anti-bacterial, anti-cancer, anti-corrosive and biocompatible properties for improved orthopedic applications. RSC Advances, 5(104), 85831–85844. https://doi.org/10.1039/c5ra17747b

Olivares-Navarrete, R., Rodil, S. E., Hyzy, S. L., Dunn, G. R., Almaguer-Flores, A., Schwartz, Z., & Boyan, B. D. (2015). Role of integrin subunits in mesenchymal stem cell differentiation and osteoblast maturation on graphitic carbon-coated microstructured surfaces. Biomaterials, 51, 69–79. https://doi.org/10.1016/j.biomaterials.2015.01.035

Owens, G. J., Singh, R. K., Foroutan, F., Alqaysi, M., Han, C.-M., Mahapatra, C., Kim, H.-W., & Knowles, J. C. (2016). Sol–gel based materials for biomedical applications. Progress in Materials Science, 77, 1–79. https://doi.org/10.1016/j.pmatsci.2015.12.001

Pandiyaraj, K. N., Selvarajan, V., Rhee, Y. H., Kim, H. W., & Pavese, M. (2010). Effect of dc glow discharge plasma treatment on PET/TiO2 thin film surfaces for enhancement of bioactivity. Colloids and Surfaces B: Biointerfaces, 79(1), 53–60. https://doi.org/10.1016/j.colsurfb.2010.03.023

Pereira, A., Shitsuka, D. M., Parreira, F. J., & Shitsuka, R. (2018). Metodologia da Pesquisa Científica. Santa Maria, RS: Universidade de Santa Maria.

Pires, A. L. R., Bierhalz, A. C. K., & Moraes, A. M. (2015). Biomateriais: tipos, aplicações e mercado. Química Nova, 38(7), 957–971. https://doi.org/10.5935/0100-4042.20150094

Punt, I. M., Visser, V. M., Van Rhijn, L. W., Kurtz, S. M., Antonis, J., Schurink, G. W. H., & Van Ooij, A. (2008). Complications and reoperations of the SB Charité lumbar disc prosthesis: Experience in 75 patients. European Spine Journal, 17(1), 36–43. https://doi.org/10.1007/s00586-007-0506-8

Quéré, D. (2008). Wetting and Roughness. Annual Review of Materials Research, 38(1), 71–99. https://doi.org/10.1146/annurev.matsci.38.060407.132434

Rasouli, R., Barhoum, A., & Uludag, H. (2018). A review of nanostructured surfaces and materials for dental implants: Surface coating, patterning and functionalization for improved performance. Biomaterials Science, 6(6), 1312–1338. https://doi.org/10.1039/c8bm00021b

Rodríguez-Cano, A., Cintas, P., Fernández-Calderón, M. C., Pacha-Olivenza, M. ángel, Crespo, L., Saldaña, L., Vilaboa, N., González-Martín, M. L., & Babiano, R. (2013). Controlled silanization-amination reactions on the Ti6Al4V surface for biomedical applications. Colloids and Surfaces B: Biointerfaces, 106, 248–257. https://doi.org/10.1016/j.colsurfb.2013.01.034

Romagnoli, C., D’Asta, F., & Brandi, M. L. (2013). Drug delivery using composite scaffolds in the context of bone tissue engineering. Clinical Cases in Mineral and Bone Metabolism, 10(3), 155–161. https://doi.org/10.11138/ccmbm/2013.10.3.155

Romano, A. P., Fedel, M., Deflorian, F., & Olivier, M. G. (2011). Silane sol-gel film as pretreatment for improvement of barrier properties and filiform corrosion resistance of 6016 aluminium alloy covered by cataphoretic coating. Progress in Organic Coatings, 72(4), 695–702. https://doi.org/10.1016/j.porgcoat.2011.07.012

Rosa, M. B., Albrektsson, T., Francischone, C. E., Schwartz Filho, H. O., & Wennerberg, A. (2013). Micrometric characterization of the implant surfaces from the five largest companies in Brazil, the second largest worldwide implant mrket. The International Journal of Oral & Maxillofacial Implants, 28(2), 358–365. https://doi.org/10.11607/jomi.2791

Sakai, R. T., Di Da Cruz, F. M. L., De Melo, H. G., Benedetti, A. V., Santilli, C. V., & Suegama, P. H. (2012). Electrochemical study of TEOS, TEOS/MPTS, MPTS/MMA and TEOS/MPTS/MMA films on tin coated steel in 3.5% NaCl solution. Progress in Organic Coatings, 74(2), 288–301. https://doi.org/10.1016/j.porgcoat.2012.01.001

Salvador, D. G., Marcolin, P., Beltrami, L. V. R., Brandalise, R. N., & Kunst, S. R. (2017). Influence of the pretreatment and curing of alkoxysilanes on the protection of the titanium–aluminum–vanadium alloy. Journal of Applied Polymer Science (Online). https://doi.org/10.1002/app.45470

Salvador, D. G., Marcolin, P., Beltrami, L. V. R., Brandalise, R. N., & Kunst, S. R. (2018). Development of Alkoxide Precursors-Based Hybrid Coatings on Ti-6Al-4V Alloy for Biomedical Applications: Influence of pH of Sol. Journal of Materials Engineering and Performance, 27(6), 2863–2874. https://doi.org/10.1007/s11665-018-3368-9

Savaris, M., Santos, V. dos, & Brandalise, R. N. (2016). Influence of different sterilization processes on the properties of commercial poly(lactic acid). Materials Science and Engineering C, 69, 661–667. https://doi.org/10.1016/j.msec.2016.07.031

Sepulveda, P., Jones, J. R., & Hench, L. L. (2002). In vitro dissolution of melt-derived 45S5 and sol-gel derived 58S bioactive glasses. Journal of Biomedical Materials Research, 61(2), 301–311. https://doi.org/10.1002/jbm.10207

Shoucheng, C., Guo, Y., Liu, R., Wu, S., Fang, J., Huang, B., Li, Z., Chen, Z., & Chen, Z. (2018). Tuning surface properties of bone biomaterials to manipulate osteoblastic cell adhesion and the signaling pathways for the enhancement of early osseointegration. Colloids and Surfaces B: Biointerfaces, 164, 58–69. https://doi.org/10.1016/j.colsurfb.2018.01.022

Silva-Bermudez, P., & Rodil, S. E. (2013). An overview of protein adsorption on metal oxide coatings for biomedical implants. Surface and Coatings Technology, 233, 147–158. https://doi.org/10.1016/j.surfcoat.2013.04.028

Sjöström, T., Brydone, A. S., Meek, R. D., Dalby, M. J., Su, B., & Mcnamara, L. E. (2013). Titanium nanofeaturing for enhanced bioactivity of implanted orthopedic and dental devices. Nanomedicine, 8(1), 89–104. https://doi.org/10.2217/nnm.12.177

Slepička, P., Michaljaničová, I., Rimpelová, S., & Švorčík, V. (2017). Surface roughness in action – Cells in opposition. Materials Science and Engineering C, 76, 818–826. https://doi.org/10.1016/j.msec.2017.03.061

Su, Y., Luo, C., Zhang, Z., Hermawan, H., Zhu, D., Huang, J., Liang, Y., Li, G., & Ren, L. (2018). Bioinspired surface functionalization of metallic biomaterials. Journal of the Mechanical Behavior of Biomedical Materials, 77(January 2017), 90–105. https://doi.org/10.1016/j.jmbbm.2017.08.035

Tengvall, P., & Lundström, I. (1992). Physico-chemical considerations of titanium as a biomaterial. Clinical Materials, 9, 115–134.

van Ooij, W. J., Zhu, D., Stacy, M., Seth, A., Mugada, T., Gandhi, J., & Puomi, P. (2005). Corrosion protection properties of organofunctional silanes - An overview. Tsinghua Science and Technology, 10(6), 639–664. https://doi.org/10.1016/S1007-0214(05)70134-6

Veronesi, F., Giavaresi, G., Fini, M., Longo, G., Ioannidu, C. A., Scotto d’Abusco, A., Superti, F., Panzini, G., Misiano, C., Palattella, A., Selleri, P., Di Girolamo, N., Garbarino, V., Politi, L., & Scandurra, R. (2017). Osseointegration is improved by coating titanium implants with a nanostructured thin film with titanium carbide and titanium oxides clustered around graphitic carbon. Materials Science and Engineering C, 70, 264–271. https://doi.org/10.1016/j.msec.2016.08.076

Wang, M., Wang, Y., Chen, Y., & Gu, H. (2013). Improving endothelialization on 316L stainless steel through wettability controllable coating by sol-gel technology. Applied Surface Science, 268, 73–78. https://doi.org/10.1016/j.apsusc.2012.11.159

Wen-Cheng, C., & Ko, C. L. (2013). Roughened titanium surfaces with silane and further RGD peptide modification in vitro. Materials Science and Engineering C, 33(5), 2713–2722. https://doi.org/10.1016/j.msec.2013.02.040

Wennerberg, A., & Albrektsson, T. (2009). Effects of titanium surface topography on bone integration: A systematic review. Clinical Oral Implants Research, 20(SUPPL. 4), 172–184. https://doi.org/10.1111/j.1600-0501.2009.01775.x

Zanotto, E. D., Filho, O. P., & Souza, M. T. (2013). Vitreous composition, bioactive vitreous fibres and fabrics, and articles. Patent WO 2015/021519. PCT/BR20 14/000275.

Zareidoost, A., Yousefpour, M., Ghasemi, B., & Amanzadeh, A. (2012). The relationship of surface roughness and cell response of chemical surface modification of titanium. Journal of Materials Science: Materials in Medicine, 23(6), 1479–1488. https://doi.org/10.1007/s10856-012-4611-9

Zhao, B., Wang, H., Qiao, N., Wang, C., & Hu, M. (2017). Corrosion resistance characteristics of a Ti-6Al-4V alloy scaffold that is fabricated by electron beam melting and selective laser melting for implantation in vivo. Materials Science and Engineering C, 70, 832–841. https://doi.org/10.1016/j.msec.2016.07.045

Downloads

Published

28/05/2021

How to Cite

MARCOLIN, P.; FROZZA, C. O. da S. .; HENRIQUES, J. A. P. .; KUNST, S. R. .; CROVACE, M. C. .; ELY , M. R. .; VIEIRA, L. .; FARIAS, M. C. M. .; BRANDALISE, R. N. . Bioactivity of Ti6Al4V alloy with bioglass and corrosion protection by silane coating. Research, Society and Development, [S. l.], v. 10, n. 6, p. e23310615308, 2021. DOI: 10.33448/rsd-v10i6.15308. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/15308. Acesso em: 18 apr. 2024.

Issue

Section

Engineerings