Hydraulic conductivity and diffusivity of an Oxisol cultivated with sugarcane fertigated with nitrogen and potassium

Authors

DOI:

https://doi.org/10.33448/rsd-v10i6.15402

Keywords:

Saccharum spp.; Infiltration; Pores.

Abstract

This study had the objective to evaluate the effect of irrigation and fertigation (NK) in the hydraulic conductivity and diffusivity of an Oxisol cultivated with sugarcane. The experimental design comprised randomized blocks in a 5 × 2 factorial scheme, with four replications. Treatments consisted of five levels of water replacement (100, 75, 50, 25 and 0%), with and without fertirrigation (NK). The planting of sugarcane, cultivar RB85-5453, was performed in a double row (W-shaped), 8 m long, with 1.80 m spacing between the double rows, the distance between the crops in the double row was 0.40 m, with a total area of 52,8 m2 in each paddock. For treatments with water, replacement (WR) a drip tube was placed in the ground at a depth of 0.20 m among the furrows of the double row. The drip tube (DRIPNET PC 16150) comprised a thin wall, 1.0 bar pressure, nominal discharge 1.0 L h-1, and 0.50 m spacing between drippers. Nitrogen was applied by fertirrigation at a dose of 100 Kg ha-1, at 30-day intervals, with 10 applications throughout the development of the sugarcane culture. Potassium fertilization was done partially, in 30% of the furrows, and the remaining part was treated with the irrigation water. Nitrogen and potassium were spread only in the treatment with 0% water replacement. Was evaluated hydraulic conductivity and diffusivity versus logarithmic pressure head, at a depth of 10 cm, using RETC software. The hydraulic diffusivity for water replacement of 25 and 50% with fertigation was 160.3 and 14.9 cm2 days-1 for the lower values of the logarithm of the pressure head.

References

Aimrun, W., Amin, M. & Eltaib, S. (2004). Effective porosity of paddy soils as an estimation of its saturated hydraulic conductivity. Geoderma, 121, 197–203.

Breulmann, M., Schulz, E., Weißhuhn, K. & Buscot, F. (2012). Impact of the plant community composition on labile soil organic carbon, soil microbial activity and community structure in semi-natural grassland ecosystems of different productivity. Plant and Soil, 352, 253–265.

Brito, A. S. Variabilidade espacial da condutividade hidráulica e da permeabilidade ao ar em função dos conteúdos de água e ar no solo. (2010). Tese (Doutorado) - Escola Superior de Agricultura “Luiz de Queiroz”, Piracicaba.

Chief, K., Ferré, T. P. A., & Nijssen, B. (2006). Fiel d testing of a soil corer air permeameter (SCAP) in desert soils. Vadose Zone Journal, Madison, 5(4), 1257-1263.

Chung, C-K., Kim, J-H., Kim, J., & Kim, T. (2018). Hydraulic conductivity variation of coarse-fine soil mixture upon mixing ratio. Hindawi, Advances in Civil Engineering, 2018, 1-11.

Cookson, W., Osman, M., Marschner, P., Abaye, D.A., Clark, I, Murphy, D.V., Stockdale, E.A., & Watsonf, C.A. (2007). Controls on soil nitrogen cycling and microbial community composition across land use and incubation temperature. Soil Biology and Biochemistry, 39, 744–756.

Cunha, F. N., Silva, N. F., Moura, L. M. F., Teixeira, M. B., Carvalho, J. J., & Silva, R. T. (2015). Influência da difusividade e condutividade hidráulica na infiltração de água em um latossolo vermelho sob diferentes sistemas de cultivo. Revista Brasileira de Agricultura Irrigada, 9(3) 102 - 112.

Delgado-Rodríguez, O., Peinado-Guevara, H. J., Green-Ruíz, C. R., Herrera-Barrientos, J., & Shevnin, V. (2011). Determination of hydraulic conductivity and fines content in soils near an unlined irrigation canal in Guasave, Sinaloa, Mexico. Journal of soil science and plant nutrition, 11(3), 13-31.

Doussan, C., & Ruy, S. (2009). “Prediction of unsaturated soil hydraulic conductivity with electrical conductivity.” Water Resources Research, 45(10).

Eguchi, E. S., Cecato, U., Muniz, A. S., Mari, G. C., Murano, R. A.C., & Sousa Neto, E. L. (2016). Mudanças físicas e químicas em solo fertilizado com esterco de aves com e sem escarificação. Revista Brasileira de Engenharia Agrícola e Ambiental, 20 (4), 316-321.

García-Gutiérrez, C., Pachepsky, Y., & Martín, M. Á. (2018). Technical note: Saturated hydraulic conductivity and textural heterogeneity of soils, Hydrol. Earth Syst. Sci., 22, 3923–3932.

Gonçalves, A. D., & Libardi, P. L. (2013). Analysis of the soil hydraulic conductivity determination by the instantaneous profile method. Brazilian Science Review, 37(5), 1174-1184.

Hao, M., Zhang, J., Meng, M., Chen, H. Y. H., Guo, X., Liu, S., & Ye, L. (2019). Impacts of changes in vegetation on saturated hydraulic conductivity of soil in subtropical forests. Sci Rep, 9, 8372.

Klute, A. (1965). Laboratory measurement of hydraulic conductivity of saturated soil. In: BLACK, C. A. (Ed.). Methods of soil analysis: part 1. Madison: American Society of Agronomy, 210-221.

Lakatos, E. M., & Marconi, M. A. (2003). Fundamentos de metodologia científica. 5. ed. São Paulo: Atlas, 1-311.

Masís-Meléndez, F., Deepagoda, T. C., de Jonge, L. W., Tuller, M., & Moldrup, P. (2014). “Gas diffusion-derived tortuosity governs saturated hydraulic conductivity in sandy soils.” Journal of Hydrology, 512, 388-396.

Mualem, Y. (1976). A new model for predicting the hydraulic conductivity of unsaturated porous media. Water Resource Research, 12, 513-522.

Neyshabouri, M. R., Rahmati, M., Doussan, C., & Behroozinezhad, B. (2013). “Simplified estimation of unsaturated soil hydraulic conductivity using bulk electrical conductivity and particle size distribution.” Soil Research, 51(1), 23-33.

Pauletto, E.A., Libardi, P.L., Manfron, P.A., & Moraes, S.O. (1988). Determinação da condutividade hidráulica a partir da curva de retenção de água. Revista Brasileira de Ciência do Solo, Viçosa, MG, 12, 189-195.

Rahmati, M. (2017). “Reliable and accurate point-based prediction of cumulative infiltration using soil readily available characteristics: A comparison between GMDH, ANN, and MLR.” Journal of Hydrology, 551.

Rahmati, M., Neyshaboury, M.R. & Mohammadi, P. (2019). Prediction of soil hydraulic conductivity at saturation using air permeability at any individual soil water content. KSCE J Civ Eng 23, 5226–5234.

Sobrinho, O. P. L., Arriero, S. S., Silva, G. S., Sousa, A. B., & Pereira, Á. I. S. (2018). Determination of hydraulic conductivity by the Auger-Hole method. BIOFIX Scientific Journal, 3(1), 91-95.

van Genuchten M. T., Leij, F. J., & Yates, S. R. (2009). RETEC, Code for quantifying the hydraulic functions of unsaturated soils: version 6.02. Riverside: University of California.

van Genuchten, M. Th. (1980). A closed-from equation for predicting the conductivity of unsaturated soils. Soil Science Society of American Journal, Madison, 44, 892-898.

Villarreal, R., Lozano, L. A., Soracco, C. G., Filgueira, R. R., & Sarli, G. O. (2016). Soil water diffusivity: A simple laboratory method for its determination. Water Resources and Irrigation Management, Salvador, BA, 5(1), 15-21.

Wang, Q., Shao, M., & Horton, R. (2004). A simple method for estimating water diffusivity of unsaturated soils. Soil Sci. Soc. Am. J., 68, 713-718.

Downloads

Published

29/05/2021

How to Cite

CUNHA, F. N. .; TEIXEIRA, M. B. .; SILVA, N. F. da .; CABRAL FILHO, F. R. .; ALVES, D. K. M. . Hydraulic conductivity and diffusivity of an Oxisol cultivated with sugarcane fertigated with nitrogen and potassium. Research, Society and Development, [S. l.], v. 10, n. 6, p. e23710615402, 2021. DOI: 10.33448/rsd-v10i6.15402. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/15402. Acesso em: 24 jun. 2021.

Issue

Section

Agrarian and Biological Sciences