Process simulation of biodiesel production from vegetable oil deodorization distillate using hydrotalcite-hydroxyapatite as catalyst
DOI:
https://doi.org/10.33448/rsd-v10i6.15452Keywords:
Biodiesel; DWSIM; Heterogeneous catalysis; Simulation; Transesterification.Abstract
In There are few simulation studies in the literature focusing on the production of biodiesel from vegetable oil deodorization distillate (VODD), a waste originating from the vegetable oil processing stage, using hydrotalcite-hydroxyapatite as a heterogeneous catalyst. In this study, the simulation process was performed using open interface software DWSIM® Version 6.3. The motivation relied on the positive performance of the catalyst during the experimental studies. So, in the simulator design, the lipid raw material, ethanol, and the catalyst were fed together in a CSTR-01 conversion reactor. The thermodynamic fluid package used for this process was the Non-Random Two-Liquid (NRTL) activity coefficient model. The process flowchart consisted of the reaction step (oil transesterification), and separation steps of the ethyl esters produced, excess ethanol and purification of biodiesel. As a result, different scenarios were simulated, using commercial soybean oil as a comparative form, different types of catalysts and different molar ratios of alcohol and VODD. Among the main differences between the simulated cases, it was demonstrated that the excess of alcohol (1:45) caused greater quantity of VODD consumption, and consequently the greater formation of ethyl esters (biodiesel), resulting higher conversions (> 95%). In addition, the results obtained confirmed the adequacy of VODD as a potential raw material to produce biodiesel, as it is relatively cheaper than edible oils and contributes to the use of waste. Thus, confirming that the chemical catalyst was able to form the main esters of fatty acids even using a residual raw material.
References
Abdurakhman, Y. B., Putra, Z. A., & Bilad, M. R. (2017). Process simulation and economic analysis of biodiesel production from waste cooking oil with membrane bioreactor. In: AIP Conference Proceedings. AIP Publishing LLC, 1891(1), 020011. https://doi.org/10.1063/1.5005344
Aboelazayem, O., Gadalla, M., & Saha, B. (2018). Design and simulation of an integrated process for biodiesel production from waste cooking oil using supercritical methanolysis. Energy, 161, 299-307. https://doi.org/10.1016/j.energy.2018.07.139
Aghbashlo, M., Tabatabaei, M., Rastegari, H., & Ghaziaskar, H. S. (2018). Exergy-based sustainability analysis of acetins synthesis through continuous esterification of glycerol in acetic acid using Amberlyst® 36 as catalyst. Journal of Cleaner Production, 183, 1265-1275. https://doi.org/10.1016/j.jclepro.2018.02.218
ASTM D6751-15, Standard Specification for Biodiesel Fuel Blend Stock (B100) for Middle Distillate Fuels, ASTM Internacional, West Conshohocken, PA, 2015, www.astm.org.
Baskar, G., & Aiswarya, R. (2016). Trends in catalytic production of biodiesel from various feedstocks. Renewable and Sustainable Energy Reviews, 57, 496-504. https://doi.org/10.1016/j.rser.2015.12.101
Borugadda, V. B., & Goud, V. V. (2012). Biodiesel production from renewable feedstocks: Status and opportunities. Renewable and Sustainable Energy Reviews, 16(7), 4763-4784. https://doi.org/10.1016/j.rser.2012.04.010
Brasil, H., Pereira, P., Corrêa, J., Nascimento, L., Rumjanek, V., Almeida, V., & Rodrigues, E. (2017). Preparation of hydrotalcite–hydroxyapatite material and its catalytic activity for transesterification of soybean oil. Catalysis Letters, 147(2), 391-399. https://doi.org/10.1007/s10562-016-1961-9
Chen, G., Shan, R., Shi, J., Liu, C., & Yan, B. (2015). Biodiesel production from palm oil using active and stable K doped hydroxyapatite catalysts. Energy Conversion and Management, 98, 463-469. https://doi.org/10.1016/j.enconman.2015.04.012
Chilev, C., & Simeonov, E. (2014). Simulation of biodiesel production by transesterification of vegetable oils. Journal of Chemical Technology and Metallurgy, 49(5), 479-486.
Coral, N., Brasil, H., Rodrigues, E., Da Costa, C. E., & Rumjanek, V. (2019). Microwave-modified hydrotalcites for the transesterification of soybean oil. Sustainable Chemistry and Pharmacy, 11, 49-53. https://doi.org/10.1016/j.scp.2019.01.002
Cruz, R. P., Ferreira, F. B., & Rodrigues, F. D. Á. (2017). Simulation and economic analysis of biodiesel production from macauba oil. The Journal of Engineering and Exact Sciences, 3(3), 533-560. https://doi.org/10.18540/2446941603032017533
El-Galad, M. I. (2018). Techno-economic analysis of biodiesel production using co-solvent.
Essamlali, Y., Amadine, O., Larzek, M., Len, C., & Zahouily, M. (2017). Sodium modified hydroxyapatite: Highly efficient and stable solid-base catalyst for biodiesel production. Energy Conversion and Management, 149, 355-367. https://doi.org/10.1016/j.enconman.2017.07.028
Giwa, A., & Umanah, K. S. (2019). Optimization of Biodiesel Production from Used Cooking Oil: Aspen HYSYS Simulation and Experimental Validation. In: International Journal of Engineering Research in Africa. Trans Tech Publications Ltd, 43, 38-48. https://doi.org/10.4028/www.scientific.net/JERA.43.38
Guldhe, A., Singh, B., Mutanda, T., Permaul, K., & Bux, F. (2015). Advances in synthesis of biodiesel via enzyme catalysis: Novel and sustainable approaches. Renewable and Sustainable Energy Reviews, 41, 1447-1464. https://doi.org/10.1016/j.rser.2014.09.035
Hanif, M. A., Nisar, S., Akhtar, M. N., Nisar, N., & Rashid, N. (2018). Optimized production and advanced assessment of biodiesel: A review. International Journal of Energy Research, 42(6), 2070-2083. https://doi.org/10.1002/er.3990
Hussein, R. Z., Attia, N. K., Fouad, M. K., & ElSheltawy, S. T. (2021). Experimental investigation and process simulation of biolubricant production from waste cooking oil. Biomass and Bioenergy, 144, 105850. https://doi.org/10.1016/j.biombioe.2020.105850
Karacan, S., & Cagatay, M. T. (2018). Simulation and optimization of reactive packed distillation column for biodiesel production using heterogeneous catalyst. International Journal of Energy Applications and Technologies, 5(4), 153-160. https://doi.org/10.31593/ijeat.438001
Knothe, G. (2001). Analytical methods used in the production and fuel Quality Assessment of Biodiesel. Transaction of the American Society of Agricultural Engineers, 2(44), 193-200. https://doi.org/10.13031/2013.4740
Lee, A. F., & Wilson, K. (2015). Recent developments in heterogeneous catalysis for the sustainable production of biodiesel. Catalysis Today, 242, 3-18. https://doi.org/10.1016/j.cattod.2014.03.072
Ma, F., & Hanna, M. (1999). Biodiesel production: a review. Bioresource Technology, 70, 1-15. https://doi.org/10.1016/S0960-8524(99)00025-5
Medeiros, D. (2021). DWSIM Wiki. https://dwsim.inforside.com.br.
Micic, R. D., Tomic, M. D., Kiss, F. E., Martinovic, F. L., Simikic, M. D., & Molnar, T. T. (2016). Comparative analysis of single-step and two-step biodiesel production using supercritical methanol on laboratory-scale. Energy Conversion and Management, 124, 377-388. https://doi.org/10.1016/j.enconman.2016.07.043
Morais, S., Mata, T. M., Martins, A. A., Pinto, G. A., & Costa, C. A. (2010). Simulation and life cycle assessment of process design alternatives for biodiesel production from waste vegetable oils. Journal of Cleaner Production, 18(13), 1251-1259. https://doi.org/10.1016/j.jclepro.2010.04.014
Navajas, A., Campo, I., Moral, A., Echave, J., Sanz, O., Montes, M., Odriozola, J. A., Arzamendi, G., & Gandía, L. M. (2018). Outstanding performance of rehydrated Mg-Al hydrotalcites as heterogeneous methanolysis catalysts for the synthesis of biodiesel. Fuel, 211, 173–181. https://doi.org/10.1016/j.fuel.2017.09.061
Okullo, A., & Noah, T. (2017). Process simulation of biodiesel production from jatropha curcas seed oil. American Journal of Chemical Engineering, 5(4), 56-63. https://doi.org/10.11648/j.ajche.20170504.12
Patel, R. L., & Sankhavara, C. D. (2017). Biodiesel production from Karanja oil and its use in diesel engine: A review. Renewable and Sustainable Energy Reviews, 71, 464-474. https://doi.org/10.1016/j.rser.2016.12.075
Rodrigues, E., Brasil, H., Barros, T., Pereira, C., Dos Reis, M. A. L., & Almeida, O. (2018). Synthesis and characterization of hydrotalcite-hydroxyapatite material doped with carbon nanotubes and its application in. Cerâmica, 64, 166-175. https://doi.org/10.1590/0366-69132018643702230
Ruhul, A. M., Kalam, M. A., Masjuki, H. H., Fattah, I. R., Reham, S. S., & Rashed, M. M. (2015). State of the art of biodiesel production processes: a review of the heterogeneous catalyst. RSC Advances, 5(122), 101023-101044. https://doi.org/10.1039/C5RA09862A
Sajid, Z., Khan, F., & Zhang, Y. (2016). Process simulation and life cycle analysis of biodiesel production. Renewable Energy, 85, 945-952. https://doi.org/10.1016/j.renene.2015.07.046
Santana, H. S., Tortola, D. S., Reis, É. M., Silva Jr, J. L., & Taranto, O. P. (2016). Transesterification reaction of sunflower oil and ethanol for biodiesel synthesis in microchannel reactor: Experimental and simulation studies. Chemical Engineering Journal, 302, 752-762. https://doi.org/10.1016/j.cej.2016.05.122
Sousa, M. R., Santana, H. S., & Taranto, O. P. (2020). Modeling and simulation using OpenFOAM of biodiesel synthesis in structured microreactor. International Journal of Multiphase Flow, 132, 103435. https://doi.org/10.1016/j.ijmultiphaseflow.2020.103435
Souza, M. F., Hirata, G. F., & Batista, E. A. (2020). Evaluation of kinetics and thermodynamic parameters for simulation of palm oil biodiesel production. Fluid Phase Equilibria, 525, 112792. https://doi.org/10.1016/j.fluid.2020.112792
Verma, P., & Sharma, M. P. (2016). Review of process parameters for biodiesel production from different feedstocks. Renewable and Sustainable Energy Reviews, 62, 1063-1071. https://doi.org/10.1016/j.rser.2016.04.054
Vilas-Bôas, R. N., Da Silva, L. L., Fernandes, L. D., Augusto, B. L., & Mendes, M. F. (2020). Study of the Use of Hydrotalcite–Hydroxyapatite as Heterogeneous Catalysts for Application in Biodiesel Using By-Product as Raw Material. Catalysis Letters, 150, 3642-3652. https://doi.org/10.1007/s10562-020-03274-0
Wang, L., Du, W., Liu, D., Li, L., & Dai, N. (2006). Lipase-catalyzed biodiesel production from soybean oil deodorizer distillate with absorbent present in tert-butanol system. Journal of Molecular Catalysis B: Enzymatic, 43(1-4), 29-32. https://doi.org/10.1016/j.molcatb.2006.03.005
West, A. H., Posarac, D., & Ellis, N. (2008). Assessment of four biodiesel production processes using HYSYS. Plant. Bioresource Technology, 99. https://doi.org/10.1016/j.biortech.2007.11.046
Wong, K. Y., Jo-Han, N., Chong, C. T., Lam, S. S., & Chong, W. T. (2019). Biodiesel process intensification through catalytic enhancement and emerging reactor designs: A critical review. Renewable and Sustainable Energy Reviews, 116, 109399. https://doi.org/10.1016/j.rser.2019.109399
Yang, L., Nieves-Remacha, M. J., & Jensen, K. F. (2017). Simulations and analysis of multiphase transport and reaction in segmented flow microreactors. Chemical Engineering Science, 169, 106–116. https://doi.org/10.1016/j.ces.2016.12.003
Yin, X., Duan, X., You, Q., Dai, C., Tan, Z., & Zhu, X. (2016). Biodiesel production from soybean oil deodorizer distillate using calcined duck egg shell as catalyst. Energy Conversion and Management, 112, 199-207. https://doi.org/10.1016/j.enconman.2016.01.026
Yusuf, N. N. A. N., Kamarudin, S. K., & Yaakub, Z. (2011). Overview on the current trends in biodiesel production. Energy Conversion and Management, 52(7), 2741-2751. https://doi.org/10.1016/j.enconman.2010.12.004
Zhang, Y., Dube, M., McLean, D., & Kates, M. (2003a). Biodiesel production from waste cooking oil: 1. Process Design and Technological Assessment. Bioresource Technology, 89(1), 1-16. https://doi.org/10.1016/S0960-8524(03)00040-3
Zhang, Y., Dube, M. A., McLean, D. D., & Kates, M. (2003b). Biodiesel production from waste cooking oil: 2. Economic Assessment and Sensitivity Analysis. Bioresource Technology, 90(3), 229–240. https://doi.org/10.1016/S0960-8524(03)00150-0
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Laura A. de Almeida; Renata N. Vilas Bôas; Marisa F. Mendes
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.