Evaluation of the water quality of the Pardo River (MG) based on physical, chemical and microbiological parameters

Authors

DOI:

https://doi.org/10.33448/rsd-v10i5.15532

Keywords:

Hydrographic basin; Multivariate statistics; Monitoring network; Cluster analysis.

Abstract

This article presents an analysis of the monitoring of the water quality index and the use of multivariate statistical techniques in the mining portion of the Pardo River, in order to select the most significant parameters in the current aspects of water quality, grouping the stations according to the similarity of the studied parameters. The data used in the study were obtained from the Minas Gerais Water Management Institute - IGAM for the months of January to October of the year 2018. The water quality index was calculated for the 5 monitoring points and classified according to the IQA -NSF. Principal component analysis (PCA) and Cluster analysis (CA) were used to reduce the number of variables and to group stations with similar characteristics, respectively. The PD005 station presented the lowest average of the water quality index, this is due to the fact that the parameter of faecal coliforms stands out negatively in great quantity in the station. Using the PCA, two main components were selected as indicators of water quality explaining the cumulative variance of 78%. The CA grouped the stations into three groups, being able to identify the most polluted and the least polluted stations. The results obtained through multivariate statistics have proved to be important for understanding the current water quality situation in the basin and can be used to improve the management of water resources because the collection and analysis of all parameters at all monitoring stations requires greater availability of financial resources.

References

Ana – Agência Nacional de Águas. (2009) Indicadores de Qualidade– índice de qualidade das águas. <http://pnqa.ana.gov.br/indicadoresQA/IndiceQA.aspx>.

Anteneh et al. (2018). Assessment of surface water quality in Legedadie and Dire catchments, Central Ethiopia, using multivariate statistical analysis. Acta Ecologica Sinica. 38 < https://doi.org/10.1016/j.chnaes.2017.05.005>

Bodrud-Doza et al. (2016) Characterization of groundwater quality using water evaluation indices, multivariate statistics and geostatistics in central Bangladesh. Water Science. 30 < https://doi.org/10.1016/j.wsj.2016.05.001>

Carrasco, G. et al. (2019). Water quality evaluation through a multivariate statistical HJ-Biplot approach. Journal of Hydrology. 577. < https://doi.org/10.1016/j.jhydrol.2019.123993>.

Castro Junior, R. M.; Sobreira, F. G.; & Bortoloti, F. D. (2007). Modelagem geoestatística a partir de parâmetros da qualidade da água (IQA-NSF) para a sub-bacia hidrográfica do rio Castelo (ES) usando sistema de informações geográficas. Revista Brasileira de Cartografia. 59(3).

Cavalcante, I., Silva, R. S., Blanco, C. J. C., Teixeira, L. C. G. M., & Fernandes, L. L (2017). Análise da qualidade da água de uma bacia hidrográfica periurbana no município de Capitão Poço/PA. Revista AIDIS, 12, 413-431.

Cecconella, S. T., Centeno, L. N., & Guedes, H. A. S. (2018) Índice de qualidade de água modificado pela análise multivariada: estudo de caso do Arroio Pelotas, RS, Brasil. Engenharia Sanitária e Ambiental. 23(5), 973-978. https://doi.org/10.1590/s1413-41522018165394

CONAMA (2005) – Conselho Nacional do Meio Ambiente. Resolução nº 357, de 17 de março de 2005. Dispõe sobre a classificação dos corpos de água e diretrizes ambientais para o seu enquadramento, bem como estabelece as condições e padrões de lançamento de efluentes, e dá outras providências. Diário Oficial da União, Brasília, DF.

Li et al. (2018). A comparative assessment of Australia's Lower Lakes water quality under extreme drought and post-drought conditions using multivariate statistical techniques. Journal of Cleaner Production. 190. https://doi.org/10.1016/j.jclepro.2018.04.121

Liu, S., Ryu, D., Webb, J. A., Lintern, A., Waters, D., Guo, D., & Western, A. W. (2018). Characterisation of spatial variability in water quality in the Great Barrier Reef catchments using multivariate statistical analysis. Marine Pollution Bulletin, 137(October), 137–151. https://doi.org/10.1016/j.marpolbul.2018.10.019.

Lopes, F. B. et al. (2008). Mapa da qualidade das águas do rio Acaraú, pelo emprego do IQA e Geoprocessamento. Revista Ciência Agronômica. 39(3).

Maia, K. P., Silva, G. A., & Libânio, M. (2019) Aplicação de análise multivariada no estudo da frequência de amostragem e do número de estações de monitoramento de qualidade da água. Engenharia Sanitária e Ambiental, 24(5). https://doi.org/10.1590/s1413-41522019175743

Miyittah et al. (2020). Assessment of surface water quality status of the Aby Lagoon System in the Western Region of Ghana. Heliyon. 6 < https://doi.org/10.1016/j.heliyon.2020.e04466 >

Muangthong, S., & Shrestha, S. (2015). Assessment of surface water quality using multivariate statistical techniques: case study of the Nampong River and Songkhram River, Thailand. Environmental Monitoring and Assessment, 187(9). <https://doi.org/10.1007/s10661-015-4774-1>

Nonato et al. (2007) Tratamento estatístico dos parâmetros da qualidade das águas da bacia do alto curso do Rio das Velhas. Química Nova. 30. < http://dx.doi.org/10.1590/S0100-40422007000400008 >

NSF – National Sanitation Foundation (2007). Water Quality Index. <http://www.nsf.org/consumer/earth_day/wqi.asp>

Oliveira, S. L. (2017) Avaliação da qualidade da água do riacho São Caetano, de Balsas (MA), com base em parâmetros físicos, químicos e microbiológicos. Revista Engenharia Sanitária e Ambiental. 22 (3) 523-529.

Peluso et al. (2020). Integrated analysis of the quality of water bodies from the lower Parana River basin with different productive uses by physicochemical and biological indicators. Environmental Pollution. 263 < https://doi.org/10.1016/j.envpol.2020.114434 >

Santos, S. A. et al. (2018). Qualidade da água na bacia hidrográfica urbana Cancela Tamandaí, Santa Maria/RS. Soc. Nat., 30(2), 23-44 < I: http://dx.doi.org/10.14393/SN-v30n2-2018-2-X>

Seu-Anoï et al., (2018). Distribuição espacial e temporal de cianobactérias e sua relação com parâmetros ambientais no Sistema Lagunar de Aby (sudeste da Costa do Marfim, África Ocidental). Aust. J. Basic Appl. Sci., 12 (1), 37 – 44.

Unda-Calvo, J. et al. (2019). Antigüedad, Multivariate statistical analyses for water and sediment quality index development: a study of susceptibility in na urban river, Science of the Total Environment. https://doi.org/10.1016/j.scitotenv.2019.135026

Ustaoglu, T. T. (2020). Assessment of stream quality and health risk in a subtropical Turkey river system: A combined approach using statistical analysis and water quality index. Ecological Indicators. 113 < https://doi.org/10.1016/j.ecolind.2019.105815>

Von Sperling, M. (2007) Estudos e modelagem da qualidade da água de rios. Princípios do tratamento biológico de águas residuárias. (3a ed.), Departamento de Engenharia Sanitária e Ambiental; Universidade Federal de Minas Gerais, 7.

Published

07/05/2021

How to Cite

COLLARES, M. F. A.; SILVA, L. F. da; BARBOSA, R. B. G. .; DOURADO, A. C. C.; REZENDE, B. N.; NASCIMENTO, . J. A. C. do . Evaluation of the water quality of the Pardo River (MG) based on physical, chemical and microbiological parameters. Research, Society and Development, [S. l.], v. 10, n. 5, p. e60010515532, 2021. DOI: 10.33448/rsd-v10i5.15532. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/15532. Acesso em: 24 dec. 2024.

Issue

Section

Agrarian and Biological Sciences