Dengue, Zika Fever and Chikungunya: Biological Aspects and Situation in South America between 2015 and 2020




Arboviruses; Underreporting; Epidemiology.


Arbovirosis are diseases caused by arthropod-borne viruses and affect the region of the Americas, including the South American continent, where provoke impact on the economy and public health. Among the more than 500 viruses registered in the International Catalog of Arbovirus, those that cause dengue, zika fever and chikungunya stand out. Thus, this article comprises a descriptive study based on secondary data where we compare biological and diagnostic aspects these diseases, as well as assessing its presence, between 2015 and 2020, in the countries that integrate the su-american continental portion. Despite the considerable progress made in recent years to better understand the molecular aspects of etiologic agents and clinical conditions, the scenario is complex and the three arboviruses caused outbreaks in South America, in the period described, even in different proportions, with dengue remaining the most common arbovirus infection, whose the incidence rates fluctuate each analyzed year. The fight against arboviruses must be permanent and requires well-founded intersectoral policies and individual responsibility. Government interventions need to tighten up to implement measures to combat, and health and education systems could align more effectively for a stronger work to raise the awareness that is triggered from basic education students, helping in the continued education of the population in favor of a more oriented and prudent society. It is also necessary to reflect on the effectiveness of information systems to decrease the problem of underreporting that prevents showing the real scenario of these diseases.

Author Biographies

Raquel Bezerra da Silva, Federal University of Paraiba

Federal University of Paraiba

Maria Isabela Ferreira de Araujo, Federal University of Pernambuco

University Federal of Pernambuco


Aerts, C., Revilla, M., Duval, L., Paaijmans, K., Chandrabose, J., Cox H., & Sicuri E. (2020). Understanding the role of disease knowledge and risk perception in shaping preventive behavior for selected vector-borne diseases in Guyana. PLoS Neglected Tropical Diseases, 14(4), 1-19. doi:

Agrelli, A., de Moura, R. R., Crovella, S., & Brandão, L. A. C. (2019). ZIKA virus entry mechanisms in human cells. Infection, Genetic and Evolution, 69, 22-29. doi: 10.1016/j.meegid.2019.01.018

Andrade, J. N., Peixoto, T. M., & Coelho, M. M. P. (2020). Visita do Agente de Combate às Endemias frente pandemia por Covid-19: desafios e perspectivas. Revista de Divulgação Científica Sena Aires, REVISA, 9(4), 709-716. Retrieved from

Amaral, J. K., Bilsborrow, J. B., & Schoen, R. T. (2019). Brief report: the disability of chronic chikungunya arthritis. Clinical Rheumatology, 38(7), 2011-2014. doi: 10.1007/s10067-019-04529-x

Bajwa, R., Starr, J., & Daily, K. (2017). Gemcitabine-induced chronic systemic capillary leak syndrome. Case Reports, 2017, 1-3. doi: 10.1136/bcr-2017-221068

Barnabe, A. S., Franco, N. B., & de Campos Mello, T. R. (2019). Análise de prevalência dengue no Município de São Paulo. Estação Científica (UNIFAP), 9(2), 09-17. doi:

Basso, C., García da Rosa, E., Romero, S., González, C., Lairihoy, R., & Roche, I. (2015). Improved dengue fever prevention through innovative intervention methods in the city of Salto, Uruguay. Transactions of the Royal Society of Tropical Medicine Hygiene, 109(2), 134-142. doi: 10.1093/trstmh/tru183

Benítez-Díaz, L., Diaz-Quijano, F. A., & Martínez-Veja, R. A. (2020). Experiencia y percepción del riesgo asociados a conocimientos, actitudes y prácticas sobre dengue en Riohacha, Colombia. Ciência & Saúde Coletiva, 25, 1137-1146. doi:

Botelho, L. L. R., de Almeida Cunha, C. C., & Macedo, M. (2011). O método da revisão integrativa nos estudos organizacionais. Gestão e sociedade, 5(11), 121-136. doi:

Brasil, P., Pereira, J. P., Moreira, M. E., Ribeiro Nogueira, R. M., Damasceno L., & Wakimoto M. (2016). Zika virus infection in pregnant women in Rio de Janeiro. New England Journal of Medicine, 375(24), 2321-2334, 2016. doi: 10.1056/NEJMoa1602412

Cardoso, F. D., Rezende, I. M. D., Barros, E. L. T., Sacchetto, L., Garcês, T. C. D. C. S., et al. (2019). Circulation of Chikungunya virus East-Central-South Africa genotype during an outbreak in 2016-17 in Piaui State, Northeast Brazil. Revista do Instituto de Medicina Tropical de São Paulo, 61(57), 1-9. doi:

Castillo, J. J., Reagan, J. L., Bishop, K. D., & Apor E. (2014). Viral lymphomagenesis: from pathophysiology to the rationale for novel therapies. British Journal of Haematology, 165(3), 300-315. doi: 10.1111/bjh.12788.

CDC. (2021). Arbovirus Catalog – Virus Selection. Retrieved January 3, 2021, from

CDC. (2021). Congenital Zika Syndrome & Other Birth Defects. Retrieved February 3, 2021, from

Chen, W., Foo, S. S., Sims, N. A., et al. (2013). Arthritogenic alphaviruses: new insights into arthritis and bone pathology. Trends of Microbiology, 23(1), 35-43. doi: 10.1016/j.tim.2014.09.005

Da Silva, J. P., Da Silva Pimentel, M. A., & Jardim, M. A. G. (2019). A influência da precipitação e da temperatura sobre as ocorrências de febre chikungunya no município de Belém do Pará, Brasil. Brazilian Journal of Environmental Sciences, 2019(53), 81-96. doi:10.5327/Z2176-947820190243

De Oliveira, D. N., Lima, E. O., Melo, C. F., et al. (2019). Inflammation markers in the saliva of infants born from Zika-infected mothers: exploring potential mechanisms of microcephaly during fetal development. Science Reports, 9(1), 1-7. doi:

Departamento de Vigilância das Doenças Transmissíveis. (2016). Dengue: diagnóstico e manejo clínico adulto e criança. (5th ed.). Retrieved from:

Donalisio, M. R., Freitas, A. R. R., & Von-Zuben, A. P. B (2017). Arboviroses emergentes no Brasil: desafios para a clínica e implicações para a saúde pública. Revista de Saúde Pública, 51, 1-6. doi:

Epelboin, Y., Chaney, S. C., Guidez, A., Habchi-Hanriot, N., Talaga, S., Wang, L., & Dusfour, I. (2018). Successes and failures of sixty years of vector control in French Guiana: what is the next step?. Memórias do Instituto Oswaldo Cruz, 113(5), 1-10. Retrieved from

Espinal, M. A., Andrus, J. K., Jauregui, B., Waterman, S. H., Morens, D. M., Santos, J. I. (2019). Emerging and reemerging Aedes-transmitted arbovirus infections in the region of the Americas: implications for health policy. American journal of public health, 109(3), 387-392.

Estofolete, C. F., Terzian, A. C., Colombo, T. E., de Freitas Guimarães, G., Junior, H. C., & da Silva, R. A. (2019). Co-infection between Zika and different Dengue serotypes during DENV outbreak in Brazil. Journal of Infectious Public Health, 12(2), 178-181. doi: 10.1016/j.jiph.2018.09.007

Fagour, L., Santamaria, C., & Césaire, R. (2015). Les tests de diagnostic rapide dans le diagnostic des arboviroses. Revue Francophone des Laboratoires, 15(474), 51-62.

Fares, R. C., Souza, K. P., Añez, G., & Rios M. (2015). Epidemiological scenario of dengue in Brazil. BioMed Research International, 2015, 1-14. doi:

Faria, N. R., Kraemer, M. U., Hill, S. C., et al. (2018). Genomic and epidemiological monitoring of yellow fever virus transmission potential. Science, 361(6405), 894-899. doi: 10.1126/science.aat7115

Feder, H. M., Plucinski, M., & Hoss, D. M. (2016). Dengue with a morbilliform rash and a positive tourniquet test. JAAD Case Reports, 2(5), 422-423. doi: 10.1016/j.jdcr.2016.07.010

Figueiredo, L. T. M. (2019). Human urban arboviruses can infect wild animals and jump to sylvatic maintenance cycles in South America. Frontiers in Cellular and Infection Microbiology, 9(259), 1-6. doi: 10.3389/fcimb.2019.00259

Ganjian, N., & Riviere-Cinnamond, A. (2020). Mayaro virus in Latin America and the Caribbean. Revista Panamericana de Salud Pública, 44, 1-14. doi:

Gonzalez-Pacheco M., Francos M., Olivares A., Úbeda, X. (2020, May 4-8). Key socio-economic and environmental factors in the reappearance of the Aedes aegypti mosquito in the Atacama (North Chile) Desert areas and mitigation risk measures. [Conference presentation]. EGU General Assembly 2020.

Gould, E., Pettersson, J., Higgs, S., Charrel, R., & De Lamballerie, X. (2017). Emerging arboviruses: why today? One Health, 4, 1-13.

Grande, A. J., Reid H., Thomas, E., Foster, C., & Darton, T. C. (2016). Tourniquet test for dengue diagnosis: systematic review and meta-analysis of diagnostic test accuracy. PLoS Neglected Tropical Diseases, 10(8), 1-23. doi: 10.1371/journal.pntd.0004888

Hartmann, D., Jara-Figueroa, C., Kaltenberg, M., & Gala. P. (2019). O espaço setorial-ocupacional revela a estratificação socioeconômica no Brasil, 2019, 1-29. Retrieved from

Hoyos-López, R., Atencia-Pineda, M. C., & Gallego-Gómez, J. C. (2019). Phylogenetic analysis of dengue-2 serotypes circulating in mangroves in Northern Cordoba, Colombia. Revista da Sociedade Brasileira de Medicina Tropical, 52, 1-5. doi: 10.1590/0037-8682-0060-2019

Hunsperger, E. A., Sharp, T. M., Lalita, P. L., et al. (2016). Use of a rapid test for diagnosis of dengue during suspected dengue outbreaks in resource-limited regions. Journal of Clinical Microbiology, 54(8), 2090-209. doi: 10.1128/JCM.00521-16

Katzelnick, L. C., Gresh L., Halloran, M. E., Mercado, J. C., Kuan G., Gordon A., et al. (2017). Antibody-dependent enhancement of severe dengue disease in humans. Science, 358(6365), 929-932. doi: 10.1126/science.aan6836

Kawai, Y., Nakayama, E., Takahashi, K., Taniguchi, S., Shibasaki, K. I., & Kato, F. (2019). Increased growth ability and pathogenicity of American-and Pacific-subtype Zika virus (ZIKV) strains compared with a Southeast Asian-subtype ZIKV strain. PLoS Neglected Tropical Disease, 13(6), 1-19. doi: 10.1371/journal.pntd.0007387

Lippi, C. A., Stewart-Ibarra, A. M., Loor, M. F. B, Zambrano, J. E. D., Lopez, N. A. E, Blackburn, J. K., & Ryan, S. J. (2019). Geographic shifts in Aedes aegypti habitat suitability in Ecuador using larval surveillance data and ecological niche modeling: Implications of climate change for public health vector control. PLoS Neglected Tropical Diseases, 13(4), 1-19. doi:

Lowe, R., Barcellos, C., Brasil, P., et al. (2018). The Zika virus epidemic in Brazil: from discovery to future implications. International Journal of Environmental Research and Public Health, 15(1), 96. doi: 10.3390/ijerph15010096.

Magalhaes, T., Chalegre, K. D. M., Braga, C., & Foy, B. D. (2020). The endless challenges of arboviral diseases in Brazil. Tropical Medicine and Infectious Disease, 5, 75, 1-6. doi: 10.3390/tropicalmed5020075

Marcondes, C. B., Contigiani, M., & Gleiser, R. M. (2017). Emergent and reemergent arboviruses in South America and the Caribbean: why so many and why now?. Journal of Medical Entomology, 54(3), 509-532. doi: 10.1093/jme/tjw209.

Mascarenhas, M. D. M., Batista, F. M. D. A., Rodrigues, M. T. P., Barbosa, O. D. A. A., & Barros, V. C. (2020). Simultaneous occurrence of COVID-19 and dengue: what do the data show?. Cadernos de Saúde Pública, 36(6), 1-4. doi: 10.1590/0102-311X00126520

Masciadri, V. (2019). Panorama sobre el dengue en los Estados miembros del Mercosur (1991-2015). Revista Panamericana de Salud Pública, 43, 1-7. doi: 10.26633/RPSP.2019.11

Matusali, G., Colavita, F., Bordi, L., Lalle, E., Ippolito, G., Capobianchi, M. R., & Castilletti, C. (2019). Tropism of the chikungunya virus. Viruses, 11(2), 175.

Maucourant, C., Petitdemange, C., Yssel, H., & Vieillard, V. (2019). Control of acute arboviral infection by natural killer cells. Viruses, 11(2), 131. doi: 10.3390/v11020131

Mayer, S. V., Tesh, R. B., & Vasilakis, N. (2017). The emergence of arthropod-borne viral diseases: A global prospective on dengue, chikungunya and zika fevers. Acta Tropica, 166, 155-163. doi: 10.1016/j.actatropica.2016.11.020.

Mehdi, Z., Shahbaz, H., Owais, A., Hasan, S. U., Nasr, I., Jahangir, A., et al. (2019). Frequency, Awareness, and Symptoms of Chikungunya Among Patients in a Tertiary Care Hospital of Karachi: A Cross-Sectional Study. Cureus, 11(2), 1-13. doi: 10.7759/cureus.4054

Metz S. W. & Pijlman G. P. (2016). Function of chikungunya virus structural proteins. In C. M. Okeoma (Ed), Chikungunya Virus (pp. 63-74). Springer. Retrieved from

Ministério da Saúde. (2019). Guia de Vigilância em saúde (3th ed.). Retrieved from

Murugesan, A., & Manoharan, M. (2020). Dengue Virus. In M. M. Ennaji (Ed.), Emerging and Reemerging Viral Pathogens (pp. 281-359). Academic Press. doi: 10.1016/B978-0-12-819400-3.00016-8

Niu, C., Huang, Y., Wang, M., Huang, D., Li, J., Huang, S., Yang, F., Wan, C., & Zhang, R. (2020). Differences in the Transmission of Dengue Fever by Different Serotypes of Dengue Virus. Vector-Borne and Zoonotic Diseases, 20(2), 143-150. doi: 10.1089/vbz.2019.2477

Paixão, E. S., Rodrigues, L. C., Costa, M. D. C. N., Itaparica, M., Barreto, F., Gérardin, P., & Teixeira, M. G. (2018). Chikungunya chronic disease: a systematic review and meta-analysis. Transactions of The Royal Society of Tropical Medicine and Hygiene, 112 (7), 301-316. doi: 10.1093/trstmh/try063

Pan American Health Organization. (2017). Tool for the diagnosis and care of patients with suspected arboviral diseases. Retrieved from

Parker, E. L., Silverstein, R. B., Verma, S., & Mysorekar, I. U. (2020). Viral-immune cell interactions at the maternal-fetal interface in human pregnancy. Frontiers in Immunology, 11, 1-17. doi:

Peloggia, A., Ali, M., Nanda, K., & Bahamondes, L. (2018). Zika virus exposure in pregnancy and its association with newborn visual anomalies and hearing loss. International Journal of Gynecology & Obstetrics, 143(3), 277-281. doi: 10.1002/ijgo.12663.

Petersen, L. R., Jamieson, D. J., Powers, A. M., & Honein, M. A. (2016). Zika virus. New England Journal of Medicine, 374(16), 1552-1563. doi: 10.1056/NEJMra1602113

PLISA. (2021). Cases of Chinkungunya Virus Disease. Retrieved May 9, 2021, from

PLISA. (2021). Cases of Zika Virus Disease. Retrieved May 9, 2021, from

PLISA. (2021). Dengue and Severe Dengue: Cases and Deaths for subregions of the Americas. Retrieved May 9, 2021, from

Prata‐Barbosa, A., Martins, M. M., Guastavino, A. B., & Cunha, A. J. L. A. (2019). Effects of Zika infection on growth. Jornal de Pediatria, 95, 30-41. doi:

Raafat, N., Blacksell, S. D., Maude, R. J. A. (2019). Review of dengue diagnostics and implications for surveillance and control. Transactions of Royal Society of Tropical Medicine Hygiene, 113(11), 653-660. doi: 10.1093/trstmh/trz068

Ranjit, S., Ramanathan, G., Ramakrishnan, B., & Kissoon N. (2018). Targeted interventions in critically ill children with severe dengue. Indian Journal of Critical Care Medicinal, 22(3), 154-161. doi: 10.4103/ijccm.IJCCM_413_17

Robert, M. A., Tinunin, D. T., Benitez, E. M., Ludueña-Almeida, F. F., Romero, M., Stewart-Ibarra, A. M., & Estallo, E. L. (2019). Arbovirus emergence in the temperate city of Córdoba, Argentina, 2009–2018. Scientific data, 6(1), 1-6. doi:

Romero, H. A., Pavía, T. A. V., Cervantes, M. A. V., Pliego, A. F., Repetto, A. C. H., & Juárez, M. L. (2018). The Dual Role of the Immune Response in Reproductive Organs During Zika Virus Infection. Frontiers of Immunology, 10, 1-7. doi: 10.3389/fimmu.2019.01617

Sangkaew, S., Ming, D., Boonyasiri, A., Honeyford, K., Kalayanarooj, S., Yacoub, S., et al. (2021). Risk predictors of progression to severe disease during the febrile phase of dengue: a systematic review and meta-analysis. The Lancet Infectious Diseases, 1-13. doi:

Sharma, P. K., Kumar, M., Aggarwal, G. K., Kumar, V., Srivastava, R. D., Sahani, A., & Goyal, R. (2018). Severe manifestations of chikungunya fever in children, India, 2016. Emerging infectious diseases, 24(9), 1-3. doi: 10.3201/eid2409.180330

Sharma, V., Sharma, M., Dhull, D., Sharma, Y., Kaushik, S., & Kaushik, S. (2020). Zika virus: an emerging challenge to public health worldwide. Canadian Journal of Microbiology, 66(2), 87-98. doi: 10.1139/cjm-2019-0331

Simarmata, D., Ng, D. C. E., Kam, Yiu-Wing, Lee, B., Sum, M. S. H., & Her, Z. (2016). Early clearance of Chikungunya virus in children is associated with a strong innate immune response. Science Reports, 6(1), 1-9. doi: 10.1038/srep26097

Spencer Clinton, J. L., Tran, L. L., Vogt, M. B., Rowley, D. R., Kimata, J. T., & Rico-Hesse, R. (2020). IP-10 and CXCR3 signaling inhibit Zika virus replication in human prostate cells. Plos One, 15(12), 1-30. doi:

Stelitano, D., Chianese A., Astorri R., et al. (2019). Chikungunya virus: Update on molecular biology, epidemiology and current strategies. Translational Medicine Reports, 3(1), 22-30. doi:

Tang, B., Xiao, Y., Sander, B., Kulkarni, M. A., RADAM-LAC Research Team, & Wu, J. (2020). Modelling the impact of antibody-dependent enhancement on disease severity of Zika virus and dengue virus sequential and co-infection. Royal Society Open Science, 7(4), 1-14. doi: 10.1098/rsos.191749

Taylor A., Liu X., Zaid A., et al. (2017). Mutation of the n-terminal region of chikungunya virus capsid protein: Implications for vaccine design. Mbio, 8 (1), 1-14. DOI: 10.1128/mBio.01970-16

Usuga, A. F., Zuluaga-Idárraga, L. M., Alvarez, N., Rojo, R., Henao, E., & Rúa-Uribe, G. L. (2019). Barriers that limit the implementation of thermal fogging for the control of dengue in Colombia: a study of mixed methods. BMC Public Health, 19(1), 1-10. doi:

Vega, F. L. R., Bezerra, J. M. T., Said, R. F. D. C., Gama Neto, A. N. D., Cotrim, E. C., Mendez, D., et al. (2019). Emergence of chikungunya and Zika in a municipality endemic to dengue, Santa Luzia, MG, Brazil, 2015-2017. Revista da Sociedade Brasileira de Medicina Tropical, 52, 1-9.

Wan, S. W., Wu-Hsieh, B. A., Lin, Y. S., Chen, W. Y., Huang, Y., & Anderson, R. (2018). The monocyte-macrophage-mast cell axis in dengue pathogenesis. Journal of Biomedical Science, 25(1), 1-10. doi:

Wang, A., Thurmond, S., Islas, L., Hui, K., & Hai, R. (2017). Zika virus genome biology and molecular pathogenesis. Emerging Microbes & Infection, 6 (1), 1-6. doi: 10.1038/emi.2016.141

Weaver, S. C., Chen, R., & Diallo, M. (2018). Chikungunya Virus: Role of Vectors in Emergence from Enzootic Cycles. Annual Review of Entomology, 65, 1-20. doi: 10.1146/annurev-ento-011019-025207

Whitehorn, J., & Simmons, C. P. (2011). The pathogenesis of dengue. Vaccine, 29(42), 7221-7228. doi: 10.1016/j.vaccine.2011.07.022

Winokur, O. C., Main, B. J., Nicholson, J., & Barker, C. M. (2020). Impact of temperature on the extrinsic incubation period of Zika virus in Aedes aegypti. PLoS neglected tropical diseases, 14(3), 1-15. doi: 10.1371/journal.pntd.0008047

World Health Organization. (2017). Dengue and severe dengue. Retrieved February 3, 2021, from,vomiting%2C%20swollen%20glands%20or%20rash.

World Health Organization. (2009). Dengue: guidelines for diagnosis, treatment, prevention and control (new ed.). Retrieved from

Young, A. R., Locke, M. C., Cook, L. E., Hiller, B. E., Zhang, R., Hedberg, M. L., et al. (2019). Dermal and muscle fibroblasts and skeletal myofibers survive chikungunya virus infection and harbor persistent RNA. PLoS Pathogens, 15(8), 1-30. doi: 10.1371/journal.ppat.1007993

Zanotto, P. M. A., & Leite, L. C. C. The challenges imposed by Dengue, Zika, and Chikungunya to Brazil. (2018). Frontiers in Immunology, 9, 1-6. doi: 10.3389/fimmu.2018.01964

Zhang, L., Shen, Z. L., Feng, Y., Li, D. Q., Zhang, N. N., Deng, Y. Q., et al. (2019). Infectivity of Zika virus on primary cells support tree shrew as animal model. Emerging microbes & infections, 8(1), 232-241. doi: 10.1080/22221751.2018.1559707

Zhou, D., Luo, J., Sun, T., Ni, H., & Yu, X. (2019). Development of a Panel of Six Duplex Real-Time Reverse Transcription Polymerase Chain Reaction Assays for Detecting 12 Mosquito-Borne Viruses. Nanoscience and Nanotechnology Letters, 11(1), 136-142. doi:



How to Cite

SILVA, R. B. da; ARAUJO, M. I. F. de; BARBOSA, P. P. de S. Dengue, Zika Fever and Chikungunya: Biological Aspects and Situation in South America between 2015 and 2020. Research, Society and Development, [S. l.], v. 10, n. 6, p. e36710615539, 2021. DOI: 10.33448/rsd-v10i6.15539. Disponível em: Acesso em: 24 jun. 2021.



Review Article