Xylose a carbon source for the production of biosurfactant: mini review

Authors

DOI:

https://doi.org/10.33448/rsd-v10i6.15573

Keywords:

Sugars; Hemicellulose; Microorganisms; Hydrolysates; Biological surfactants.

Abstract

Xylose is the second most abundant monosaccharide in nature. Xylose monomers are part of the structure of hemicellulose, which shows amorphous structure and is easily degraded by acid hydrolysis. Xylose is widely studied for xylitol and biofuels production; however, it is still little explored for the production of biosurfactants, which are active surface molecules with emulsifying properties, are biodegradable and are non-toxic to the environment. Bacteria, fungi and yeasts are extensively studied for the production of biosurfactants from different carbohydrates, oils and hydrocarbons, but there are few reports in the literature about the production of biosurfactants from hemicellulosic hydrolysates rich in xylose. Some studies show that bacteria and yeasts generally produce glycolipids from hemicellulosic hydrolysates. Due to the different properties of glycolipids, they can be used in different areas of industry, as they can be applied as bioremediators, bioinsecticides and antimicrobials.

References

Ahmad, N. & Zakaria, M.R. (2019). Oligosaccharide from hemicelulose. In: Hidayah Ariffin, S.M. Sapuan and Mohd Ali Hassan (Ed.), Lignocellulose for Future Bioeconomy (135-152). Amsterdam, Netherlands: Elsevier Inc.

Ahuja, V., Macho, M., Ewe, D., Singh, M., Saha, S. & Saurav, K. (2020). Biological and pharmacological potential of xylitol: a molecular insight of unique metabolism. Foods, 9(11), pp.1592. doi:10.3390/foods9111592

Akbari, S., Abdurahman, N.H., Yunus, R.M., Fayaz, F. & Alara, O.R. (2018). Biosurfactants-a new frontier for social and environmental safety: a mini review.

Biotechnology Research and Innovation, 2(1), 81-90. https://doi.org/10.1016/j.biori.2018.09.001

Amani, H & Kariminezhad, H. (2016). Study on emulsification of crude oil in water using emulsan biosurfactant for pipeline transportation. Petroleum Science and Technology, 34(3), 216-222. https://doi.org/10.1080/10916466.2015.1118500

Amaral, P.F.F., da Silva, J.M., Lehocky, M., Barros-Timmons, A.M.V., Coelho, M.A.Z., Marrucho, I.M. & Coutinho, J.A.P. (2006). Production and characterization of a bioemulsifier from Yarrowia lipolytica. Process Biochemistry, 41(8), 1894-1898. https://doi.org/10.1016/j.procbio.2006.03.029

Archana, S., Tomar, G.S. & Srinikethan, G. (2016). Studies on Production of Biosurfactant from Pseudomonas Aeruginosa (MTCC7815) & its application in microbial enhanced oil recovery. Research Journal of Chemical and Environmental Sciences, 4(4S), 84-91.

Arutchelvi, J.I., Bhaduri, S., Uppara, P.V. & Doble, M. (2008). Mannosylerythritol lipids: a review. Journal of Industrial Microbiology & Biotechnology, 35(12), 1559-1570. doi:10.1007/s10295-008-0460-4

Ashish, D.M. (2018). Application of biosurfactant produced by an adaptive strain of C. tropicalis MTCC230 in microbial enhanced oil recovery (MEOR) and removal of motor oil from contaminated sand and water. Journal of Petroleum Science and Engineering, 170, 40-48. https://doi.org/10.1016/j.petrol.2018.06.034

Ask, M., Bettiga, M. & Mapelli, V. & Olsson, L. (2013). The influence of HMF and furfural on redox-balance and energy-state of xylose-utilizing Saccharomyces cerevisiae. Biotechnology for Biofuels, 6(22), 1-13. https://doi.org/10.1186/1754-6834-6-22

Banat, I.M., Samarah, N., Murad, M., Horne, R. & Banerjee, S. (1991). Biosurfactant production and use in oil tank clean-up. World Journal of Microbiology and Biotechnology, 7, 80-88. https://doi.org/10.1007/BF02310921

Banat, I.M., Winterburn, J., Martin, P.J., Dolman, B. & Díaz De Rienzo, M.A. (2015). Sophorolipid biosurfactants: Possible uses as antibacterial and antibiofilm agent. New Biotechnology, 32(6), 720-726. DOI: 10.1016/j.nbt.2015.02.009

Chen, C., Lin, J., Wang, W., Huang, H. & Li, S. (2019). Cost-effective production of surfactin from xylose-rich corncob hydrolysate using Bacillus subtilis BS-37. Waste and Biomass Valorization, 10, 41-347. https://doi.org/10.1007/s12649-017-0052-5

Chen, H. & Wang, L. Sugar strategies for biomass biochemical conversion. (2017). In: Chen, H. & Wang, L. (Ed.), Technologies for Biochemical Conversion of Biomass (137-164). United Kingdom: Academic Press.

Chen, W.C., Juang, R.S. & Wei, Y.H. (2015). Applications of a lipopeptide biosurfactant, surfactin, produced by microorganisms. Biochemical Engineering Journal,

, 158-169. http://dx.doi.org/10.1016/j.bej.2015.07.009

Cheng, H., Wang, B., Lv, J., Jiang, M., Lin, S. & Deng, Z. (2011). Xylitol production from xylose mother liquor: A novel strategy that combines the use of recombinant Bacillus subtilis and Candida maltosa. Microbial Cell Factories, 10(5), 1-12. https://doi.org/10.1186/1475-2859-10-5

Cirigliano, M.C. & Carman, G.M (1984). Isolation of a bioemulsifier from Candida lipolytica. Applied and Environmental Microbiology, 48(4), 747-750. https://doi.org/10.1128/AEM.48.4.747-750.1984

Cooper, D.G., Zajic, J.E. & Gerson, D.F. (1979). Production of surface-active lipids by Corynebacterium lepus. Applied and Environmental Microbiology, 37(1), 4-10. https://doi.org/10.1128/AEM.37.1.4-10.1979

Cortés-Camargo, S., Pérez-Rodríguez, N., Oliveira, R.P.S., Huerta, B.E.B. & Domínguez, J.M. (2016). Production of biosurfactants from vine-trimming shoots using the halotolerant strain Bacillus tequilensis ZSB10. Industrial Crops and Products, 79, 258-266. https://doi.org/10.1016/j.indcrop.2015.11.003

Dobler, L., Carvalho, B.R., Sousa Alves, W., Neves, B.C., Freire, D.M.G. & Almeida, R.V. (2017). Enhanced rhamnolipid production by Pseudomonas aeruginosa overexpressing estA in a simple medium. PLoS One. 12(8), e0183857. https://doi.org/10.1371/journal.pone.0183857

Duvnjak, Z., Cooper, D.G. & Kosaric, N. (1982). Production of surfactant by Arthrobacter paraffineus ATCC 19558. Biotechnology and Bioengineering, 24(1), 165-175. http://doi.wiley.com/10.1002/bit.260240114

Fan, E.S., Lu, K.W., Wen, R.C. & Shen, C.R. (2020). Photosynthetic reduction of xylose to xylitol using cyanobacteria. Biotechnology Journal, 15(6), e1900354. doi:10.1002/biot.201900354

Faria, N.T., Santos, M.V., Fernandes, P., Fonseca, L.L., Fonseca, C. & Ferreira, F.C. (2014). Production of glycolipid biosurfactants, mannosylerythritol lipids, from pentoses and d-glucose/d-xylose mixtures by Pseudozyma yeast strains. Process Biochemistry, 49(11), 1790-1799. http://dx.doi.org/10.1016/j.procbio.2014.08.004

Freire, A.A., Simonelli, G., Assis, D.J., Druzian, J.I. & Lobato, A.K.C.L. (2020). Surfactin production using papaya peel aqueous extract as substrate and its application for iron adsorption. Research, Society and Development, 9(7), e437974077. https://doi.org/10.33448/rsd-v9i7.4077

Haba, E., Espuny, M.J., Busquets, M. & Manresa, A. (2000). Screening and production of rhamnolipids by Pseudomonas aeruginosa 47T2 NCIB 40044 from waste frying oils. Journal of Applied Microbiology, 88(3), 379-387. http://doi.wiley.com/10.1046/j.1365-2672.2000.00961.x

Harahap, B.M. (2020). Degradation techniques of hemicellulose fraction from biomass feedstock for optimum xylose production: a review. Jurnal Keteknikan Pertanian Tropis dan Biosistem, 8(2), 107-124. https://doi.org/10.21776/ub.jkptb.2020.008.02.01

Hauser, G. & Karnovsky, M.L. (1954). Studies on the production of glycolipide by Pseudomonas aeruginosa. Journal of Bacteriology, 68(6), 645-654. https://doi.org/10.1128/JB.68.6.645-654.1954

Hu, F., Liu, Y., Lin, J., Wang, W. & Li, S. (2020). Efficient production of surfactin from xylose-rich corncob hydrolysate using genetically modified Bacillus subtilis 168. Applied and Environmental Microbiology, 104, 4017-4026. https://doi.org/10.1007/s00253-020-10528-9

Jain, R.M., Mody, K., Joshi, N., Mishra, A. & Jha, B. (2013). Production and structural characterization of biosurfactant produced by an alkaliphilic bacterium, Klebsiella sp.: evaluation of different carbon sources. Colloids and Surfaces B: Biointerfaces, 108, 199-204. http://dx.doi.org/10.1016/j.colsurfb.2013.03.002

Ji, X., Ma, H., Tian, Z., Lyu, G., Fang, G., Chen, J. & Saeed, H.A.M. (2017). Production of xylose from diluted sulfuric acid hydrolysis of wheat straw. BioResources, 12(4), 7084-7095.

Joshi-Navare, K., Singh, P.K. & Prabhune, A.A. (2014). New yeast isolate Pichia caribbica synthesizes xylolipid biosurfactant with enhanced functionality. European Journal of Lipid Science and Technology, 116(8), 1070–1079. https://doi.org/10.1002/ejlt.201300363

Käppeli, O., Walther, P., Mueller, M. & Fiechter, A. (1984). Structure of the cell surface of the yeast Candida tropicalis and its relation to hydrocarbon transport. Archives of Microbiology, 138, 279-282. https://doi.org/10.1007/BF0041089

Kim, S.K., Jo, J.H., Park, Y.C., Jin, Y.S. & Seo, J.H. (2017). Metabolic engineering of Saccharomyces cerevisiae for production of spermidine under optimal culture conditions. Enzyme and Microbial Technology, 101, 30-35. http://dx.doi.org/10.1016/j.enzmictec.2017.03.008

Konishi, M., Yoshida, Y. & Horiuchi, J. (2015). Efficient production of sophorolipids by Starmerella bombicola using a corncob hydrolysate medium. Journal of Bioscience and Bioengineering, 119(3), 317-322. https://doi.org/10.1016/j.jbiosc.2014.08.007

Kurtzman, C.P., Price, N.P.J., Ray, K.J. & Kuo, T.M. (2010). Production of sophorolipid biosurfactants by multiple species of the Starmerella (Candida) bombicola yeast clade. FEMS Microbiology Letters, 311(2), 140-146. https://doi.org/10.1111/j.1574-6968.2010.02082.x

Lang, S. (2002). Biological amphiphiles (microbial biosurfactants). Current Opinion in Colloid & Interface Science, 7(1-2), 12–20. https://doi.org/10.1016/S1359-0294(02)00007-9

Lavarack, B.P., Griffin, G.J. & Rodman, D. (2002). The acid hydrolysis of sugarcane bagasse hemicellulose to produce xylose, arabinose, glucose and other products. Biomass and Bioenergy, 23(5), 367-380. https://doi.org/10.1016/S0961-9534(02)00066-1

Macdonald, C.R., Cooper, D.G. & Zajic, J.E. (1981). Surface-active lipids from Nocardia erythropolis grown on hydrocarbons. Applied and Environmental Microbiology, 41(1), 117-123. https://doi.org/10.1128/AEM.41.1.117-123.1981

Marcelino, P.R.F., Silva, V.L., Philippini, R.R., Von Zuben, C.J., Contiero, J., Santos, J.C. & Silva, S.S. (2017). Biosurfactants produced by Scheffersomyces stipitis cultured in sugarcane bagasse hydrolysate as new green larvicides for the control of Aedes aegypti, a vector of neglected tropical diseases. PLoS One, 12, e0187125. https://doi.org/10.1371/journal.pone.0187125

Marcelino, P.R.F., Peres, G.F.D., Terán-Hilares, R., Pagnocca, F.C., Rosa, C.A., Lacerda, T.M., Santos, J.C. & Silva, S.S. (2019). Biosurfactants production by yeasts using sugarcane bagasse hemicellulosic hydrolysate as new sustainable alternative for lignocellulosic biorefineries. Industrial Crops and Products, 129, 212-223. https://doi.org/10.1016/j.indcrop.2018.12.001

Moldes, A.B., Paradelo, R., Rubinos, D., Devesa-Rey, R., Cruz, J.M. & Barral, M.T. (2011). Ex situ treatment of hydrocarbon-contaminated soil using biosurfactants from Lactobacillus pentosus. Journal of Agricultural and Food Chemistry, 59(17), 9443-9447. doi:10.1021/jf201807r

Moldes, A.B., Paradelo, R., Vecino, X., Cruz, J.M., Gudiña, E., Rodrigues, L., Teixeira, J.A., Domínguez, J.M. & Barral, M.T. (2013). Partial characterization of biosurfactant from Lactobacillus pentosus and comparison with sodium dodecyl sulphate for the bioremediation of hydrocarbon contaminated soil. Biomed Research International, 2013, 1-6. https://doi.org/10.1155/2013/961842

Moldes, A.B., Torrado, A.M., Barral, M.T. & Domínguez, J.M. (2007). Evaluation of biosurfactant production from various agricultural residues by Lactobacillus pentosus. Journal of Agricultural and Food Chemistry, 55(11), 4481-4486. doi:10.1021/jf063075g

Mulligan, C.N. (2005). Environmental applications for biosurfactants. Environmental Pollution, 133(2), 183–98. doi:10.1016/j.envpol.2004.06.009

Mussatto, S. & Teixeira, J. (2010). Lignocellulose as raw material in fermentation processes. In: Current Research, Technology and Education Topics in Applied Microbiology and Microbial Biotechnology (Ed.), (897–907). Formatex Research Center. http://www.formatex.info/microbiology2/897-907.pdf

Mussatto, S.I., Dragone, G. & Roberto, I.C. (2005). Influence of the toxic compounds present in brewer’s spent grain hemicellulosic hydrolysate on xylose-to-xylitol bioconversion by Candida guilliermondii. Process Biochemistry, 40(12), 3801-3806. https://doi.org/10.1016/j.procbio.2005.06.024

Nguyen, T.T., Youssef, N.H., McInerney, M.J. & Sabatini, D.A. (2008). Rhamnolipid biosurfactant mixtures for environmental remediation. Water Research, 42(6-7), 1735-1743. doi:10.1016/j.watres.2007.10.038

Nogueira Felix, A.K., Martins, J.J.L., Lima Almeida, J.G., Giro, M.E.A., Cavalcante, K.F., Maciel Melo, V.M., Pessoa, O.D.L., Rocha, M.V.P., Gonçalves, L.R.B. & Aguiar, R.S.S. (2019). Purification and characterization of a biosurfactant produced by Bacillus subtilis in cashew apple juice and its application in the remediation of oil-contaminated soil. Colloids and Surfaces B: Biointerfaces, 175, 256-263. https://doi.org/10.1016/j.colsurfb.2018.11.062

Nurfarahin, A.H., Mohamed, M.S. & Phang, L.Y. (2018). Culture medium development for microbial-derived surfactants production-an overview. Molecules, 23(5), 1-26. doi:10.3390/molecules23051049

Nwaguma, I.V., Chikere, C.B. & Okpokwasili, G.C. (2016). Isolation, characterization, and application of biosurfactant by Klebsiella pneumoniae strain IVN51 isolated from hydrocarbon-polluted soil in Ogoniland, Nigeria. Bioresources and Bioprocessing, 3(40), 1-13 https://doi.org/10.1186/s40643-016-0118-4

Osiro, K.O., Brink, D.P., Borgström, C., Wasserstrom, L., Carlquist, M. & Gorwa-Grauslund, M.F. (2018). Assessing the effect of D-xylose on the sugar signaling pathways of Saccharomyces cerevisiae in strains engineered for xylose transport and assimilation. FEMS Yeast Research, 18(1), 1-36. doi:10.1093/femsyr/fox096

Panjiar, N., Mattam, A.J., Jose, S., Gandham, S., Velankar, H.R. (2020). Valorization of xylose-rich hydrolysate from rice straw, an agroresidue, through biosurfactant production by the soil bacterium Serratia nematodiphila. Science of The Total Environment, 729, 1-10. https://doi.org/10.1016/j.scitotenv.2020.138933

Peng, F., Liu, Z., Wang, L. & Shao, Z. (2007). An oil-degrading bacterium: Rhodococcus erythropolis strain 3C-9 and its biosurfactants. Journal of Applied Microbiology, 102(6), 1603-1611. doi:10.1111/j.1365-2672.2006.03267.x

Portilla-Rivera, O., Torrado, A., Domínguez, J.M. & Moldes, A.B. (2008). Stability and emulsifying capacity of biosurfactants obtained from lignocellulosic sources using Lactobacillus pentosus. Journal of Agricultural and Food Chemistry, 56(17), 8074-8080. https://doi.org/10.1021/jf801428x

Portilla-Rivera, O.M., Torrado-Agrasar, A., Carballo, J., Domínguez, J.M. & Moldes, A.B. (2009). Development of a factorial design to study the effect of the major hemicellulosic sugars on the production of surface-active compounds by L. pentosus. Journal of Agricultural and Food Chemistry, 57(19), 9057-9062. https://doi.org/10.1021/jf9014872

Portilla-Rivera, O.M., Moldes, A.B., Torrado, A.M. & Domínguez, J.M. (2007). Lactic acid and biosurfactants production from hydrolyzed distilled grape marc. Process Biochemistry, 42(6), 1010-1020. https://doi.org/10.1016/j.procbio.2007.03.011

Ran, H., Zhang, J., Gao, Q., Lin, Z. & Bao, J. (2014). Analysis of biodegradation performance of furfural and 5- hydroxymethylfurfural by Amorphotheca resinae ZN1.

Biotechnology for Biofuels, 7(51), 1-12. https://doi.org/10.1186/1754-6834-7-51

Reis, C.B.L., Morandini, L.M.B., Bevilacqua, C.B., Bublitz, F., Ugalde, G., Mazutti, M.A. & Jacques, R.J.S. (2018). First report of the production of a potent biosurfactant with α,β-trehalose by Fusarium fujikuroi under optimized conditions of submerged fermentation. Brazilian Journal of Microbiology, 49(Suppl. 1), 185-192. https://doi.org/10.1016/j.bjm.2018.04.004

Resende, R.R., Rodrigues, C., Woiciechowski, A.L., Letti, L.A.J., Karp, S.G., Goelzer, F.D., Sobral, K.C.A., Coral, J.D., Campioni, T.S., Maceno, M.A.C. & Soccol, C.R. (2017). Materiais lignocelulósicos como matéria-prima para a obtenção de biomoléculas de valor comercial. In: Resende RR (Ed.), Biotecnologia Aplicada à Agro&Indústria (283-314). São Paulo: Blucher.

Roberto, I.C., Lacis, L.S., Barbosa, M.F.S. & Mancilha, I.M. (1991). Utilization of sugar cane bagasse hemicellulosic hydrolysate by Pichia stipitis for the production of ethanol. Process Biochemistry, 26(1), 15-21. https://doi.org/10.1016/0032-9592(91)80003-8

Rodrussamee, N., Sattayawat, P. & Yamada, M. (2018). Highly efficient conversion of xylose to ethanol without glucose repression by newly isolated thermotolerant Spathaspora passalidarum CMUWF1-2. BMC Microbiology, 18(73), 1–11. https://doi.org/10.1186/s12866-018-1218-4

Rusanen, A., Lappalainen, K., Kärkkäinen, J., Tuuttila, T., Mikola, M. & Lassi, U. (2019). Selective hemicellulose hydrolysis of Scots pine sawdust. Biomass Conversion and Biorefinery, 9(2), 283-291. https://doi.org/10.1007/s13399-018-0357-z

Samad, A., Zhang, J. & Chen, D., Liang, Y. (2014). Sophorolipid production from biomass hydrolysates. Applied Biochemistry and Biotechnology, 175(4), 2246-2257. doi:10.1007/s12010-014-1425-x

Santa Anna, L.M., Sebastian, G.V., Menezes, E.P., Alves, T.L.M., Santos, A.S., Pereira, N. & Freire, D.M.G. (2002). Production of biosurfactants from Pseudomonas aeruginosa PA1 isolated in oil environments. Brazilian Journal of Chemical Engineering, 19(2), 159-166. https://doi.org/10.1590/S0104-66322002000200011

Santos, D.K.F, Rufino, R.D., Luna, J.M., Santos, V.A. & Sarubbo, L.A. (2016). Biosurfactants: multifunctional biomolecules of the 21st century. International Journal of Molecular Sciences, 17(3), 1–31. doi:10.3390/ijms17030401

Shabtai. Y. (1990). Production of exopolysaccharides by Acinetobacter strains in a controlled fed-batch fermentation process using soap stock oil (SSO) as carbon source. International Journal of Biological Macromolecules, 12(2), 145-152. https://doi.org/10.1016/0141-8130(90)90066-J

Sharma, D. (2016). Biosurfactants in Food. Switzerland: Springer.

Silva, J.P.A., Mussatto, S.I. & Roberto, I.C. (2010). The influence of initial xylose concentration, agitation, and aeration on ethanol production by Pichia stipitis from rice straw hemicellulosic hydrolysate. Applied Biochemistry and Biotechnology, 162, 1306-1315. DOI 10.1007/s12010-009-8867-6

Tamburini, E., Costa, S., Marchetti, M.G. & Pedrini, P. (2015). Optimized production of xylitol from xylose using a hyper-acidophilic Candida tropicalis. Biomolecules, 5(3), 1979-1989. DOI: 10.3390/biom5031979

Tian, Z., Chen, J., Ji, X., Wang, Q., Yang, G. & Fatehi, P. (2017). Dilute sulfuric acid hydrolysis of Pennisetum (sp.) Hemicellulose. BioResources, 12(2), 2609-2617.

Turner, T.L., Zhang, G.C., Kim, S.R., Subramaniam, V., Steffen, D., Skory, C.D., Jang, J.Y., Yu, B.J. & Jin, Y.S. (2015). Lactic acid production from xylose by engineered Saccharomyces cerevisiae without PDC or ADH deletion. Applied Microbiology and Biotechnology, 99(19), 8023-8033. DOI: 10.1007/s00253-015-6701-3

Vigneshwaran, C., Vasantharaj, M.J.K. & Sivasubramanian, V. (2016). A Review on biosurfactants and its environmental applications. IOSR Journal of Environmental Science, Toxicology and Food Technology, 10, 152-160. doi:10.9790/2402-100802152160

Vijayakuma, S. & Saravanan, V. (2015). Biosurfactants-types, sources and applications. Research Journal of Microbiology, 10(5), 181-192. doi:10.3923/jm.2015.181.192

Vilela, L.F., Araujo, V.P.G., Paredes, R.S., Bon, E.P.S., Torres, F.A.G., Neves, B.C. & Eleutherio, E.C.A. (2015). Enhanced xylose fermentation and ethanol production by engineered Saccharomyces cerevisiae strain. AMB Express. 5(16), 1-7. doi: 10.1186/s13568-015-0102-y

Whang, L.M., Liu, P.W.G., Ma, C.C. & Cheng, S.S. (2008). Application of biosurfactants, rhamnolipid, and surfactin, for enhanced biodegradation of diesel-contaminated water and soil. Journal of Hazardous Materials, 151(1), 155-163. DOI: 10.1016/j.jhazmat.2007.05.063

Willenbacher, J., Yeremchuk, W., Mohr, T., Syldatk, C. & Hausmann, R. (2015). Enhancement of Surfactin yield by improving the medium composition and fermentation process. AMB Express. 5(57), 1-9. https://doi.org/10.1186/s13568-015-0145-0

Willumsen, P.A. & Karlson, U. (1996). Screening of bacteria, isolated from PAH-contaminated soils, for production of biosurfactants and bioemulsifiers. Biodegradation, 7, 415-423. https://doi.org/10.1007/BF00056425

Zhang, D., Ong, Y.L., Li, Z. & Wu, J.C. (2013). Biological detoxification of furfural and 5-hydroxyl methyl furfural in hydrolysate of oil palm empty fruit bunch by Enterobacter sp. FDS8. Biochemical Engineering Journal, 72, 77-82. http://dx.doi.org/10.1016/j.bej.2013.01.003

Zhang, G., French, W.T., Hernandez, R., Alley, E. & Paraschivescu, M. (2011). Effects of furfural and acetic acid on growth and lipid production from glucose and xylose by Rhodotorula glutinis. Biomass and Bioenergy, 35(1), 734-740. http://dx.doi.org/10.1016/j.biombioe.2010.10.00

Downloads

Published

27/05/2021

How to Cite

VIEIRA NETA, M. dos R. A. .; AZEVEDO , M. A. .; DELFORNO , T. P. .; DUARTE, I. C. S. . Xylose a carbon source for the production of biosurfactant: mini review. Research, Society and Development, [S. l.], v. 10, n. 6, p. e17810615573, 2021. DOI: 10.33448/rsd-v10i6.15573. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/15573. Acesso em: 15 jan. 2025.

Issue

Section

Review Article