Contribution to the study of galls of Ocotea puberula (Rich.) Nees (Lauraceae): Antioxidant and biological properties of the alkaloid S-(+)–dicentrine

Authors

DOI:

https://doi.org/10.33448/rsd-v10i6.15934

Keywords:

Dicentrine; Aedes Aegypti; Allelopathy; Antioxidant potential.

Abstract

The Ocotea puberula (Rich.) Nees (Lauraceae) (popular name is canela-guaiacá) is rich in secondary metabolites, among them, the alkaloids. Dicentrine is an alkaloid from O.puberula and have pharmacological actions such as anti-inflammatory, analgesic, anxiolytic and antimalarial. The objective of this work was to investigate the antioxidant and biological potential of the alkaloid dicentrine isolated from the galls of Ocotea puberula. To evaluate the antioxidant potential, the techniques of the formation of the phosphomolybdenum complex, Prussian blue and the reduction of DPPH• were used and the biological activity was evaluated using Artemia salina, sheep erythrocytes, Aedes aegypti larvae and two target species. The phosphomolybdenum method showed an antioxidant potential of 90.68% compared to rutin, 30.88% compared to BHT and 16.62% compared to ascorbic acid. By the DPPH• method it presented IC50 = 943.11 µg.mL-1, indicating low antioxidant potential. When evaluating dicentrine in Artemia salina, a low toxic potential and a non-hemolytic effect were verified in sheep erythrocytes. In the larvicidal activity in Aedes aegypti, dicentrin showed LC50 = 23.62 µg.mL-1. On Lactuca sativa, dicentrine did not influence germination, IVG and hypocotyl growth, but root growth was stimulated with 250 µg.mL-1 and inhibited with 500 µg.mL-1. On Allium cepa dicentrine with 25 and 100 µg.mL-1 stimulated the germination percentage and the GVI. The growth of the Allium cepa root was not influenced, however, the coleoptile was stimulated with 25 µg.mL-1 and inhibited with 50 µg.mL-1. After evaluating the results presented in the chosen tests, it was observed that dicentrine has a larvicidal and allelopathic potential.

References

Amarante, C. B., Müller, A. H., Póvoa, M. M., & Dolabela, M. F. (2011). Estudo fitoquímico biomonitorado pelos ensaios de toxicidade frente à Artemia salina e de atividade antiplasmódica do caule de aninga (Montrichardia linifera). Acta Amazonic,. 41 (3), 431-434. https://doi.org/10.1590/S0044-59672011000300015

Araujo, A. J. (2000). Estudo fitoquímico das folhas de Ocotea puberula (Reich.) Nees (LAURACEAE). 2000. 110f. Dissertação de Mestrado. Universidade Federal do Paraná.

Banerjee, A., Kunwar, A., Mishra, B., & Priyadarsini, K. I. Concentration dependent antioxidant/pro-oxidant activity of curcumin studies from AAPH induced hemolysis of RBCs. (2008). Chem Biol Interact, 30,174 (2), 134-9. https://dx.doi.org/10.1016/j.cbi.2008.05.009

Betim, F. C. M., Oliveira, C. F., Souza, A. M., Szabo, E. M., Zanin, S. M. W., Miguel, O. G., Miguel, M. D., & Dias, J. F. G. (2019). Ocotea nutans (Nees) Mez (Lauraceae): chemical composition, antioxidant capacity and biological properties of essential oil. Brazilian Journal of Pharmaceutical Sciences, 55, e18284. https://dx.doi.org/10.1590/s2175-97902019000118284

Betim, F. C. M., Oliveira, C. F., Montrucchio, D. P., Miguel, O. G., Miguel, M. D., Maurer, J. B. B., & Dias, J. F. (2021). Preliminary evaluation of the larvicidal activity of extracts and fractions from Ocotea nutans (Nees) Mez against Aedes aegypti. Revista da Sociedade Brasileira de Medicina Tropical, 54, e0576-2020. https://dx.doi.org/10.1590/0037-8682-0576-2020

Bouaziz, A., Mhalla, D., Zouari, I., Jlaiel, L., Tounsi, S., Jarraya, R., & Trigui, M. (2016). Antibacterial and antioxidant activities of Hammada scoparia extracts and its major purified alkaloids. South African Journal of Botany, 105, 89-96. https://dx.doi.org/10.1016/j.sajb.2016.03.012

Brotto, M. L., Cervi, A. C., & Santos, E. P. (2013). O gênero Ocotea (Lauraceae) no estado do Paraná, Brasil. Rodriguésia, 64(3), 495-525. https://dx.doi.org/10.1590/S2175-78602013000300004

Carmo, F. M. S., Borges, E. E. L., & Takaki, M. (2007). Alelopatia de extratos aquosos de canela-sassafrás (Ocotea odorifera (Vell.) Rohwer). Acta Botanica Brasilica, 21(3), 697-705. https://dx.doi.org/10.1590/S0102-33062007000300016

Castilhos, T. S., Giordani, R. B., Henriques, A. T., Menezes, F. S., & Zuanazzi, J. A. S. (2007). Avaliação in vitro das atividades antiinflamatória, antioxidante e antimicrobiana do alcalóide montanina. Revista Brasileira de Farmacognosia, 17(2), 209-214. https://dx.doi.org/10.1590/S0102-695X2007000200013

Chaithong, U., Choochote, W., Kamsuk, K., Jitpakdi, A., Tippawangkosol, P., Chaiyasit, D., Champakaew, D., Tuetun, B., & Pitasawat, B. (2006). Larvicidal effect of pepper plants on Aedes aegypti (L.) (Diptera: Culicidae). J Vector Ecol, 31(1):138-44. https://dx.doi.org/10.3376/1081-1710(2006)31[138:leoppo]2.0.co,2

Chalom, S., Jumpatong, K., Wangkarn, S., Chantara, S., Phalaraksh, C., Dheeranupattana, S., Suwankerd, W. & Pyne, S.G., & Mungkornasawakul, P. (2019). Utilization of electrocoagulation for the isolation of alkaloids from the aerial parts of Stemona aphylla and their mosquitocidal activities against Aedes aegypti. Ecotoxicology and Environmental Safety, 182, e109448. https://dx.doi.org/10.1016/j.ecoenv.2019.109448

Cheng, S. S., Huang, C. G., Chen, Y. J., Yu, J. J., Chen, W. J., & Chang, S. T. (2009). Chemical compositions and larvicidal activities of leaf essential oils from two eucalyptus species. Bioresour Technol., 100 (1), 452-6. https://dx.doi.org/10.1016/j.biortech.2008.02.038

Oliveira, D. C., Christiano, J. C. S., Soares, G. L. G., & Isaias, R. M. S. (2006). Reações de defesas químicas e estruturais de Lonchocarpus muehlbergianus Hassl. (Fabaceae) à ação do galhador Euphalerus ostreoides Crawf. (Hemiptera: Psyllidae). Brazilian Journal of Botany, 29(4), 657-667. https://dx.doi.org/10.1590/S0100-84042006000400015

Dias, J. F. G., Círio, G. M., Miguel, M. D., & Miguel, O.G . (2005). Contribuição ao estudo alelopático de Maytenus ilicifolia Mart. ex Reiss., Celastraceae. Revista Brasileira de Farmacognosia, 15(3), 220-223. https://dx.doi.org/10.1590/S0102-695X2005000300011

Dias, J. F. G. (2012). Fitoquímica e ensaios biológicos do extrato bruto etanólico, frações e substâncias isoladas provenientes das cascas de Geissospermum vellosii Allemão, (APOCYNACEAE). Tese de Doutorado. Universidade Federal do Paraná.

Ferreira, D. F. (2014). Sistema de análises de variância para dados balanceados. UFLA - Cd-Room Sisvar 4.

Garcez, W. S., Garcez, F. R., da Silva, L. M., & Hamersk,i L. (2009). Larvicidal activity against Aedes aegypti of some plants native to the West-Central region of Brazil. Bioresour Technol., 100 (24), 6647-50. https://dx.doi.org/10.1016/j.biortech.2009.06.092

Henneberg, R. (2013). Estudo do efeito antioxidante de polifenóis em eritrócitos de pacientes de hemoglobina S. Tese de Doutorado. Universidade Federal do Paraná.

Hoet S., Stévigny C., Block S., Opperdoes F., Colson P., Baldeyrou B., Lansiaux A., Bailly C., & Quetin-Leclercq J. (2004). Alkaloids from Cassytha filiformis and related aporphines: antitrypanosomal activity, cytotoxicity, and interaction with DNA and topoisomerases. Planta Med,. 70 (5), 407-13. https://dx.doi.org/10.1055/s-2004-818967.

Huang R. L., Chen C. C., Huang Y. L., Ou J. C., Hu C. P., Chen C. F., & Chang C. (1998). Anti-tumor effects of d-dicentrine from the root of Lindera megaphylla. Planta Med., 64 (3), 212-5. https://dx.doi.org/10.1055/s-2006-957411. PMID: 9581516.

Imatom, M., Novaes P., Miranda M. A. F. M., & Gualtieri S. C. J. (2015). Phytotoxic effects of aqueous leaf extracts of four Myrtaceae species on three weeds. Acta Scientiarum. Agronomy, 37(2), 241-248. https://doi.org/10.4025/actasciagron.v37i2.19079

Jayanthi P., & Lalitha P. (2011). Reducing power of the solvent extracts of Eichhornia crassipes (Mart.) Solms. Int J Pharm Pharm Sci., 3(Suppl 3), 126-128.

Kedare S. B., & Singh R.P. (2011). Genesis and development of DPPH method of antioxidant assay. J Food Sci Technol., 48 (4), 412-22. https://doi.org/10.1007/s13197-011-0251-1

Knoll M. F., Silva A. C. F., CantoDorow T. S., & Tedesco S. B. (2006). Effects of Pterocaulon polystachyum DC. (Asteraceae) on onion (Allium cepa) root-tip cells. Genet Mol Biol 29: 539-542. https://doi.org/10.1590/S1415-47572006000300024

Kumarasamy Y., Cox P. J., Jaspars M., Nahar L., Sarker S. D. (2003). Isolation, Structure Elucidation and Biological Activity of Hederacine A (I) and B (II), Two Unique Alkaloids from Glechoma hederaceae. Natural products, 34 (50). https://doi.org/10.1002/chin.200350200

Lin, H. F., Huang, H. L., Liao, J. F., Shen, C. C., & Huang, R. L. (2015). Dicentrine Analogue-Induced G2/M Arrest and Apoptosis through Inhibition of Topoisomerase II Activity in Human Cancer Cells. Planta Med., 81 (10), 830-7. https://doi.org/10.1055/s-0035-1546128.

Lü, J. M., Lin, P. H., Yao, Q., & Chen, C. (2010). Chemical and molecular mechanisms of antioxidants: experimental approaches and model systems. J Cell Mol Med., 14 (4), 840-60. https://doi.org/10.1111/j.1582-4934.2009.00897.x.

Luna, J. D., Martins, M. F., Anjos, A. F., Kuwabara, E. F., & Navarro-Silva, M. A. (2004). Susceptibility of Aedes aegypti to temephos and cypermethrin insecticides, Brazil. Revista de Saúde Pública, 38(6), 842-843. https://doi.org/10.1590/S0034-89102004000600013

Macías, F. A., Castellano, D., & Molinillo, J. M. (2000). Search for a standard phytotoxic bioassay for allelochemicals. Selection of standard target species. J Agric Food Chem., 48 (6), 2512-21. https://doi.org/10.1021/jf9903051.

Maraschin-Silva, F., & Aqüila, M. E. A. (2006). Potencial alelopático de espécies nativas na germinação e crescimento inicial de Lactuca sativa L. (Asteraceae). Acta Botanica Brasilica, 20(1), 61-69. https://doi.org/10.1590/S0102-33062006000100007

Mensor, L. L., Menezes, F. S., Leitão, G. G., Reis, A. S., dos Santos, T. C., Coube, C. S., & Leitão, S. G. (2001). Screening of Brazilian plant extracts for antioxidant activity by the use of DPPH free radical method. Phytother Res., 15 (2), 127-30. https://doi.org/10.1002/ptr.687.

Meyer, B. N., Ferrigni, N. R., Putnam, J. E., Jacobsen, L. B., Nichols, D. E., & McLaughlin, J. L. (1982). Brine shrimp: a convenient general bioassay for active plant constituents. Planta Med., 45 (5), 31-4. https://doi.org/10.1055/s-2007-971236.

Montrucchio, D. P., Miguel, O. G., Zanin, S. M., da Silva, G. A., Cardozo, A. M., & Santos, A. R. (2012). Antinociceptive effects of a chloroform extract and the alkaloid dicentrine isolated from fruits of Ocotea puberula. Planta Med., 78 (14), 1543-8. https://doi.org/10.1055/s-0032-1315026.

Muangmoon, R., Junkum, A., Chaithong, U., Jitpakdi, A., Riyong, D., Wannasan, A., Somboon, P., & Pitasawat, B. (2018). Natural larvicides of botanical origin against dengue vector Aedes aegypti (Diptera: Culicidae). The Southeast Asian Journal of Tropical Medicine and Public Health, 49 (2), 227-239.

Novello, C. R., Marques, L. C., Pires, M. E., K., A. P., Nakamura, C. V., Nocchi, S., Sarragiotto, M. H., & Mello, J. C. P. (2016). Bioactive Indole Alkaloids from Croton echioides. Journal of the Brazilian Chemical Society, 27(12), 2203-2209. https://doi.org/10.5935/0103-5053.20160112

Pavela, R. (2016). History, presence and perspective of using plant extracts as commercial botanical insecticides and farm products for protection against insects – a review. Plant Protection Science, 52 (4), 229-241.

Piña-Rodrigues, F. C. M., Figliolia, M. B., & Peixoto, M. C. Tecnologia de sementes: Testes de qualidade. In: Ferreira, A. G., Borghetti, F. (2004). Germinação do básico ao aplicado. Artmed.

Pradines, B., Rolain, J. M., Ramiandrasoa, F., Fusai, T., Mosnier, J., Rogier, C., Daries, W., Baret, E., Kunesch, G., Le Bras, J., & Parzy, D. (2002). Iron chelators as antimalarial agents: in vitro activity of dicatecholate against Plasmodium falciparum. J Antimicrob Chemother., 50 (2), 177-87. https://doi.org/10.1093/jac/dkf104.

Prieto, P., Pineda, M., & Aguilar, M. (1999). Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphomolybdenum complex: specific application to the determination of vitamin E. Anal Biochem. 269 (2), 337-41. https://doi.org/10.1006/abio.1999.4019.

Salgueiro, F. B., Lira, A. F., Rumjanek, V. M., & Castro, R. N. (2014). Phenolic composition and antioxidant properties of Brazilian honeys. Química Nova, 37 (5), 821-826. https://doi.org/10.5935/0100-4042.20140132

Souza, L. A., & Moscheta, I. S. (2000). Morfo-anatomia do desenvolvimento do fruto de Ocotea puberula (Rich. Nees) e de Nectandra megapotamica (Spreng. Mez) (Lauraceae). Acta Científica Venezolana, 51(3), 84-89.

Souza, W. M. (2008). Estudo químico e das atividades biológicas dos alcalóides indólicos de Himatanthus lancifolius (Muell. Arg.) Woodson, APOCYNACEAE – (Agoniada). Tese de Doutorado. Universidade Federal do Paraná.

Stévigny, C., Bailly, C., & Quetin-Leclercq, J. (2005). Cytotoxic and antitumor potentialities of aporphinoid alkaloids. Curr Med Chem Anticancer Agents. 5 (2), 173-82. https://doi.org/10.2174/1568011053174864.

Thambi, P. T., Kuzhivelil, B., Sabu, M. C., & Jolly, C. I. (2006). Antioxidant and anti-inflammatory activities of the flowers of Tabernaemontana coronaria (L) R. Br. Indian Journal of Pharmaceutical Sciences, 68(3), 352-55.

Vicentini, V. E. P., Camparoto, M. L., Teixeira, R. O., & Mantovani, M. S. (2001). Averrhoa carambola L., Syzygium cumini L. Skeels and Cissus sicyoides L.: medicinal herbal tea effects on vegetal and test systems. Acta Scientiarum, 23, 593-598.

Wangensteen, H., Ho, G. T. T., Tadesse, M., Miles, O. C., Moussavi, N., Mikolo, B., & Malterud, K. E. (2016). A new benzophenanthridine alkaloid and other bioactive constituents from the stem bark of Zanthoxylum heitzii. Fitoterapia, 109, 196-200.

World Health Organization – WHO (Organização Mundial da Saúde). (1981a). Instructions for determining the susceptibility orresistance of mosquito larvae to insecticides.

World Health Organization – WHO (Organização Mundial da Saúde). (1981b). Criteria and Meaning of Tests for Determining the Susceptibility or Resistance of Insects to Insecticides.

World Health Organization – WHO (Organização Mundial da Saúde). (2005). Guidelines for Laboratory and Field Testing of Mosquito Larvicides.

World Health Organization – WHO (Organização Mundial da Saúde). (2012). Global Strategy for Dengue Prevention and Control 2012-2020.

Woo, S. H., Sun, N. J., Cassady, J. M., & Snapka, R. M. (1999). Topoisomerase II inhibition by aporphine alkaloids. Biochem Pharmacol. 57 (10),1141-5. https://doi.org/10.1016/s0006-2952(99)00018-0.

Yen, G. C., & Chen, H. Y. (1995). Antioxidant activity of various tea extracts in relation to their antimutagenicity. J Agric Food Chem., 43 (3), 27-32.

Zahari, A., Ablat, A., Sivasothy, Y., Mohamad, J., Choudhary, M. I., & Awang, K. (2016). In vitro antiplasmodial and antioxidant activities of bisbenzylisoquinoline alkaloids from Alseodaphne corneri Kosterm. Asian Pac J Trop Med., 9 (4), 328-332. https://doi.org/10.1016/j.apjtm.2016.03.008.

Published

08/06/2021

How to Cite

PEREWALO, R. P.; BETIM, F.; RIGONI, A. A. R.; GRIBNER, C.; MOURA, P. F.; HIGAKI, N. T. F.; MIGUEL, O. G.; MIGUEL, M. D.; ZANIN, S. M. W.; MONTRUCCHIO, D. P.; DIAS, J. de F. G. Contribution to the study of galls of Ocotea puberula (Rich.) Nees (Lauraceae): Antioxidant and biological properties of the alkaloid S-(+)–dicentrine. Research, Society and Development, [S. l.], v. 10, n. 6, p. e53010615934, 2021. DOI: 10.33448/rsd-v10i6.15934. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/15934. Acesso em: 15 jun. 2021.

Issue

Section

Agrarian and Biological Sciences