Implementation of biomimetics as an optimization process of animal production structures

Authors

DOI:

https://doi.org/10.33448/rsd-v10i6.15974

Keywords:

Rural buildings and ambience; Biomimetism; Sustainability.

Abstract

The theoretical study of the applications of Biomimetics in the construction and development of solutions brings together methods, concepts and examples of applications that can awaken creativity and, at the same time, critical thinking about the recovery of the balance between human action and nature. The inspiration of Biomimetics can raise awareness about the need to adopt new technologies, standards, and survival criteria, considering the environmental balance. In this sense, the objective of this study is to describe the use of Biomimetics as a promising agent for sustainable ideas to the problems identified in ambience in animal production. With a systematic analysis of the literature, proposals for solutions already used/designed to solve existing problems are presented, through analogies with natural systems. In this way, less widespread technologies or research are pointed out, such as fast and portable constructions, structures that favor the improvement of thermal and acoustic comfort, water and sewage treatment, and renewable energy consumption. All these technologies are promising in the process of optimizing structures for animal production.

References

Aguiar, R. R. L. R., Queiroz, N. & Araújo, R. B. (2017). Design, Biônica e Biomimética. Editora Blucher.

Alves, F. V., Porfirio-da-Silva, V., & Karvatte Junior, N. (2019). Bem-estar animal e ambiência na ILPF. In: Bungenstab, D. J., Almeida, R. G., Laura, V. A., Balbino, L. C., Ferreira, A. D. (Ed.). ILPF: inovação com integração de lavoura, pecuária e floresta. Brasília: Embrapa.

Arruda, A. J. V. (1994). O que é Biônica? Revista Arte Comunicação, 1(1), 19-24.

Baêta, F. C., & Souza, C. F. (2010). Ambiência em Edificações Rurais - Conforto Animal. Editora UFV.

Benyus, J. M. (2002). Biomimicry: Innovation Inspired by Nature. William Morrow & Company.

Biomimicry Institute. (2021a). What-is-biomimicry? https://biomimicry.org/what-is-biomimicry/

Biomimicry Institute. (2021b). About the Institute. https://biomimicry.org/about/

Biomimicry Institute. (2021c). Biomimicry Global Design Challenge. https://biomimicry.org/globaldesignchallenge/

Biomimicry Institute. (2021d). The Eastgate Center designed by Mick Pearce uses passive and energy‑efficient mechanisms of climate control to cool residents. https://asknature.org/innovation/passively-cooled-building-inspired-by-termite-mounds/

Biomimicry Institute. (2021e). Nextep – 2020 Global Design Challenge Honorable Mention. https://biomimicry.org/solution/nextep/

Biomimicry Institute. (2021f). Elightra – 2020 Global Design Challenge Finalist. https://biomimicry.org/solution/elightra/

Biomimicry Institute. (2021g). Evaporative Cooled Food Storage System (EVA). https://biomimicry.org/solution/eva/

Biomimicry Institute. (2021h). The Moist Brick. https://biomimicry.org/solution/the-moist-brick/

Biomimicry Institute. (2021i). A Sensitive Wall. https://biomimicry.org/solution/a-sensitive-wall/

Biomimicry Institute. (2021j). EcoStp. https://biomimicry.org/solution/ecostp/

Bonsiepe, G., Kellner, P. & Poessnecker, H. (1984). Metodologia experimental: Desenho industrial. CNPq.

Brasil. (2020). Portaria n. 375 de 23 de novembro de 2020. Aprova o Plano Estratégico do Ministério da Agricultura, Pecuária e Abastecimento para o período de 2020 a 2031. Diário Oficial da União.

Bushan, B. (2009). Biomimetics: Lessons from nature – an overview. Philosophical Transactions of the Royal Society a Mathematical, Physical and Engineering Sciences, 367(1893), 1445-1486.

Collier, R. J., Dahl, G. E. & VanBaale, M. J. (2006). Major advances associated with environmental effects on dairy cattle. Journal of dairy science, 89(4), 1244–1253.

Costa, G. S. & Marvulli, M. V. N. (2020). Soluções alternativas para o tratamento, disposição ou reutilização de dejetos animais provenientes de atividade suinícola no Brasil. Brazilian Journal of Animal and Environmental Research, 3(3), 1471–1479.

Dal Más, F. E., Debiage, R. R., Schuh, B. R. F. & Guirro, E. C. B. D. P. (2020). Estresse térmico em bovinos leiteiros–Impactos, avaliação e medidas de controle. Revista Veterinária em Foco, 17(2), 42–55.

De Mori, C., Camargo, A. C., Novo, A. L. M., Palhares, J. C. P., Mergamaschi, M. A. C. M., Barioni Junior, W. & Vinholis, M. M. B. (2020). Índice de atualização tecnológica para propriedades leiteiras: IAT-Leite. Embrapa Pecuária Sudeste.

Deluca, D. (2020). The power of the Biomimicry Design Spiral – Institute Biomimicry. https://biomimicry.org/biomimicry-design-spiral/

Durai Prabhakaran, R. T., Spear, M. J., Curling, S., Wootton-Beard, P., Jones, P., Donnison, I. & Ormondroyd, G. A. (2019). Plants and architecture: the role of biology and biomimetics in materials development for buildings. Intelligent Buildings International, 11(3-4), 178–211.

Empresa Brasileira de Pesquisa Agropecuária – Embrapa. (2018). Visão 2030: O Futuro da Agricultura Brasileira. Embrapa.

Firfiris, V. K., Martzopoulou, A. G. & Kotsopoulos, T. A. (2019). Passive cooling systems in livestock buildings towards energy saving: A critical review. Energy and Buildings, 202, 109368.

Galama, P. J., Ouweltjes, W., Endres, M. I., Sprecher, J. R., Leso, L., Kuipers, A. & Klopčič, M. (2020). Symposium review: Future of housing for dairy cattle. Journal of Dairy Science. 103(6), 5759–5772.

Guilherme, D. O., Ribeiro, N. P. & Cereda, M. P. (2017). Cultivo, manejo e colheita do bambu. In: Drumond, P. M. & Wiedman, G. Bambus no Brasil: da biologia à tecnologia. Rio de Janeiro: Instituto Ciência Hoje.

Instituto Brasileiro de Engenharia de Custos – IBEC. (2019). Guia completo das novas tecnologias na área de Engenharia Civil. https://ibecensino.org.br/ materiais-gratuitos/guia-de-novas-tecnologias-em-engenharia-civil/

Inthurn, C. (2019). Biomimetismo e o design de produtos: As soluções estão na natureza. Kindle.

Jensen T. E. & Andreasen M. M. (2010). Design Methods in Practice - Beyond the ‘Systematic Approach’ of Pahl & Beitz. Proceedings of the International Design Conference, Dubrovnik, Croatia, 10.

López, M., R. Rubio, S. Martín, & B. Croxford. (2017). How plants inspire façades. From plants to architecture: Biomimetic principles for the development of adaptive architectural envelopes. Renewable and Sustainable Energy Reviews, 67, 692–703.

Lorenzetti, E. R., Campos, T. K., Olic, A. B., Oliveira, P. C., Almeida, R. O. & Martins, R. C. (2017). Bambu como recurso para tecnologias sociais na Zona da Mata mineira. In: Drumond, P. M. & Wiedman, G. Bambus no Brasil: da biologia à tecnologia. Rio de Janeiro: Instituto Ciência Hoje.

Meira, G. L. (2008). A Biomimética utilizada como ferramenta alternativa na criação de novos produtos. Anais do Segundo Encontro de Sustentabilidade em Projeto do Vale do Itajaí. Universidade do Vale do Itajaí.

Moraes, E. R., Ishihara, J. H. & Souza, D. E. S. (2020). Effect of well-being and thermal comfort on livestock production: a literature review. Research, Society and Development, 22(9), 1–22.

Nascimento, G. R., Nääs, I. A., Baracho, M. S., Pereira, D. F. & Neves, D. P. (2014). Termografia infravermelho na estimativa de conforto térmico de frangos de corte. Revista Brasileira de Engenharia Agrícola e Ambiental, 18(6) ,658–663.

Pereira, A. S., Shitsuka, D. M., Parreira, F. S. & Shitsuka, R. (2018). Metodologia da Pesquisa Científica. UFSM.

Schneider, B. (2010). Design – Uma introdução. Editora Blucher.

Silva, Z. M. C., Oliveira, A. M. S. & Gonzaga, L. G. M. (2019). A busca por princípios biomiméticos em cupins do Cerrado para aplicação em edificações de baixo consumo energético. Revista UniAbeu, 12(32), 126-142.

Souza, B. B., Silva, I. J. O., Mellace, E. M., Santos, R. F. S., Zotti, C. A. & Garcia, P. R. (2010). Avaliação do ambiente físico promovido pelo sombreamento sobre o processo termorregulatório em novilhas leiteiras. Agropecuária Científica no Semi-Árido, 6(2), 59-65.

Souza, J. C. P. V. B., Biesus, L. L. & Souza, M. V. N. (2016). Gestão da água na suinocultura. Embrapa Suínos e Aves.

Tabase, R. K., Bagci, O., De Paepe, M., Aarnink, A. J. & Demeyer, P. (2020). CFD simulation of airflows and ammonia emissions in a pig compartment with underfloor air distribution system: Model validation at different ventilation rates. Computers and Electronics in Agriculture, 171, 105297.

Trombetta, L. J., Turchetto, R., Rosa, G. M., Volpi, G. B., Barros, S. & Silva, V. R. (2020). Resíduos orgânicos e suas implicações com o carbono orgânico e microbiota do solo e seus potenciais poderes poluentes. Brazilian Journal of Development, 6(7), 43996-44005.

Van der Lugt, P., Van den Dobbelsteen A. A. J. F. & Janssen, J. J. A. (2006). An environmental, economic, and practical assesment of bamboo as a building material for supporting structures. Construction and Building Materials, 20(3), 648-656.

World Business Council for Sustainable Development – WBCSD. (2021). Energy Efficiency in Buildings. https://www.wbcsd.org/Programs/Cities-and-Mobility/Sustainable-Cities

Zari, M. P. (2007). Biomimetic approaches to architectural design for increased sustainability. The SB07 NZ Sustainable Building Conference. SB07 Auckland.

Published

21/05/2021

How to Cite

MACIEL, F. de F. .; OLIVEIRA, C. E. A. .; SILVA, L. F. da .; SOUSA, F. C. de .; TINÔCO, I. de F. F.; GATES, R. S. . Implementation of biomimetics as an optimization process of animal production structures. Research, Society and Development, [S. l.], v. 10, n. 6, p. e42410615974, 2021. DOI: 10.33448/rsd-v10i6.15974. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/15974. Acesso em: 14 jun. 2021.

Issue

Section

Review Article