Performance study of a hybrid photovoltaic/thermal system

Authors

DOI:

https://doi.org/10.33448/rsd-v10i7.16156

Keywords:

Photovoltaic; Hybrid system; PV; PVT.

Abstract

This work presents a performance study of a hybrid photovoltaic/thermal system (PVT), comparing it with a traditional photovoltaic system (PV). The electrical and thermal power, efficiency and energy produced by the systems were analyzed. The photovoltaic module (PV) used was the MSX 77 of the SOLAREX brand, composed of polycrystalline solar cells, whose peak power is 77 Watts. The PVT system analyzed was of the type PVT-liquid, composed of the same PV module and a flat solar collector of the plate type, the water supply of the collector was of the type forced by gravity. In order to determine the characteristic curves of the PV module and, consequently, the maximum electrical power generated, a load bank formed by power resistors was developed. The thermal power was quantified by measuring the water flow that fed the collector and the temperature difference of the inlet and outlet water. With the powers and solar radiation incident on the systems, the efficiencies were determined. The PVT system reduced the temperature of the PV module, increasing the efficiency of electrical generation, providing an increase in the order of 6.9% in the average daily electrical energy. The PVT system, in addition to providing an increase in electrical energy, also provides thermal energy with a higher efficiency than electrical. The heated water can be used to feed water heating systems for bathing, helping to reduce the consumption of electricity in a home.

References

Al-Nimr, M., & Qananba, K. (2018). A solar hybrid system for power generation and water distillation. Solar Energy, 171, 92-105. https://doi.org/10.1016/j.solener.2018.06.019

Bahaidarah, H., Subhan, A., Gandhidasan, P., & Rehman, S. (2013). Performance evaluation of a PV (photovoltaic) module by back surface water cooling for hot climatic conditions. Energy, 59, 445-453. https://doi.org/10.1016/j.energy.2013.07.050

Brahim, T., & Jemni, A. (2017). Economical assessment and applications of photovoltaic/thermal hybrid solar technology: A review. Solar Energy, 153, 540-561. https://doi.org/10.1016/j.solener.2017.05.081

Calca, M. V. C., Raniero, M. R., Anacleto, K. B., Franco, J. R., Dal Pai, A., & Caneppele, F. de L. (2021). Uma perspectiva sobre o aproveitamento térmico e a conversão direta da energia solar em áreas rurais no Brasil. Research, Society and Development, 10(6), e9810615610. https://doi.org/10.33448/rsd-v10i6.15610

Chow, T. (2010). A review on photovoltaic/thermal hybrid solar technology. Applied Energy, 87(2), 365-379. https://doi.org/10.1016/j.apenergy.2009.06.037

Cunow, E., & Giesler, B. (2001). The megawatt solar roof at the new Munich Trade Fair Centre – an advanced and successful new concept for PV plants in the megawatt range. Solar Energy Materials and Solar Cells, 67(1-4), 459-467. https://doi.org/10.1016/s0927-0248(00)00315-9

Dimri, N., Tiwari, A., & Tiwari, G. (2017). Thermal modelling of semitransparent photovoltaic thermal (PVT) with thermoelectric cooler (TEC) collector. Energy Conversion and Management, 146, 68-77. https://doi.org/10.1016/j.enconman.2017.05.017

Ferreira, M. A. M., & Cardoso, R. B. (2020). Impactos energéticos e ambientais do uso de sistemas solares fotovoltaicos para carregamento de carros elétricos em postos de abastecimento no Brasil. Research, Society and Development, 9(9), e767997749. https://doi.org/10.33448/rsd-v9i9.7749

Florschuetz, L. (1979). Extension of the Hottel-Whillier model to the analysis of combined photovoltaic/thermal flat plate collectors. Solar Energy, 22(4), 361-366. https://doi.org/10.1016/0038-092x(79)90190-7

Fudholi, A., Sopian, K., Yazdi, M., Ruslan, M., Ibrahim, A., & Kazem, H. (2014). Performance analysis of photovoltaic thermal (PVT) water collectors. Energy Conversion and Management, 78, 641-651. https://doi.org/10.1016/j.enconman.2013.11.017

Gang, P., Huide, F., Tao, Z., & Jie, J. (2011). A numerical and experimental study on a heat pipe PV/T system. Solar Energy, 85(5), 911-921. https://doi.org/10.1016/j.solener.2011.02.006

Ghadiri, M., Sardarabadi, M., Pasandideh-fard, M., & Moghadam, A. (2015). Experimental investigation of a PVT system performance using nano ferrofluids. Energy Conversion and Management, 103, 468-476. https://doi.org/10.1016/j.enconman.2015.06.077

Gupta, N., Garg, R., & Kumar, P. (2017). Sensitivity and reliability models of a PV system connected to grid. Renewable And Sustainable Energy Reviews, 69, 188-196. https://doi.org/10.1016/j.rser.2016.11.031

Hasan, R., & Mekhilef, S. (2017). Highly efficient flyback microinverter for grid-connected rooftop PV system. Solar Energy, 146, 511-522. https://doi.org/10.1016/j.solener.2017.03.015

Hazama, H., Masuoka, Y., Suzumura, A., Matsubara, M., Tajima, S., & Asahi, R. (2018). Cylindrical thermoelectric generator with water heating system for high solar energy conversion efficiency. Applied Energy, 226, 381-388. https://doi.org/10.1016/j.apenergy.2018.06.015

Jakhar, S., Soni, M., & Gakkhar, N. (2017). An integrated photovoltaic thermal solar (IPVTS) system with earth water heat exchanger cooling: Energy and exergy analysis. Solar Energy, 157, 81-93. https://doi.org/10.1016/j.solener.2017.08.008

Kabir, E., Kumar, P., Kumar, S., Adelodun, A., & Kim, K. (2018). Solar energy: Potential and future prospects. Renewable And Sustainable Energy Reviews, 82, 894-900. https://doi.org/10.1016/j.rser.2017.09.094

Karimi Estahbanati, M., Feilizadeh, M., Jafarpur, K., Feilizadeh, M., & Rahimpour, M. (2015). Experimental investigation of a multi-effect active solar still: The effect of the number of stages. Applied Energy, 137, 46-55. https://doi.org/10.1016/j.apenergy.2014.09.082

Kalogirou, S. (2009). Solar energy engineering: Processes and Systems. Elsevier/Academic Press.

Khoo, Y., Nobre, A., Malhotra, R., Yang, D., Ruther, R., Reindl, T., & Aberle, A. (2014). Optimal Orientation and Tilt Angle for Maximizing in-Plane Solar Irradiation for PV Applications in Singapore. IEEE Journal of Photovoltaics, 4(2), 647-653. https://doi.org/10.1109/jphotov.2013.2292743

Li, W., Jin, J., Wang, H., Wei, X., Ling, Y., & Hao, Y. et al. (2018). Full-spectrum solar energy utilization integrating spectral splitting, photovoltaics and methane reforming. Energy Conversion and Management, 173, 602-612. https://doi.org/10.1016/j.enconman.2018.06.012

Lutgens, F., Tarbuck, E., & Tasa, D. (2015). The atmosphere: An Introduction to Meteorology. Pearson Education.

Meneguzzo, F., Ciriminna, R., Albanese, L., & Pagliaro, M. (2015). The great solar boom: a global perspective into the far-reaching impact of an unexpected energy revolution. Energy Science & Engineering, 3(6), 499-509. https://doi.org/10.1002/ese3.98

Modi, A., Bühler, F., Andreasen, J., & Haglind, F. (2017). A review of solar energy-based heat and power generation systems. Renewable And Sustainable Energy Reviews, 67, 1047-1064. https://doi.org/10.1016/j.rser.2016.09.075

Nahar, A., Hasanuzzaman, M., & Rahim, N. (2017). Numerical and experimental investigation on the performance of a photovoltaic thermal collector with parallel plate flow channel under different operating conditions in Malaysia. Solar Energy, 144, 517-528. https://doi.org/10.1016/j.solener.2017.01.041

Oh, J., & TamizhMani, G. (2010). Temperature testing and analysis of PV modules PER ANSI/UL 1703 and IEC 61730 standards. 2010 35Th IEEE Photovoltaic Specialists Conference. https://doi.org/10.1109/pvsc.2010.5614569

Pathak, M., Sanders, P., & Pearce, J. (2014). Optimizing limited solar roof access by exergy analysis of solar thermal, photovoltaic, and hybrid photovoltaic thermal systems. Applied Energy, 120, 115-124. https://doi.org/10.1016/j.apenergy.2014.01.041

Polman, A., Knight, M., Garnett, E., Ehrler, B., & Sinke, W. (2016). Photovoltaic materials: Present efficiencies and future challenges. Science, 352(6283), aad4424-aad4424. https://doi.org/10.1126/science.aad4424

Quansah, D., Adaramola, M., Appiah, G., & Edwin, I. (2017). Performance analysis of different grid-connected solar photovoltaic (PV) system technologies with combined capacity of 20 kW located in humid tropical climate. International Journal Of Hydrogen Energy, 42(7), 4626-4635. https://doi.org/10.1016/j.ijhydene.2016.10.119

Quaschning, V. (2005). Understanding renewable energy systems. Earthscan.

Sahota, L., & Tiwari, G. (2017). Review on series connected photovoltaic thermal (PVT) systems: Analytical and experimental studies. Solar Energy, 150, 96-127. https://doi.org/10.1016/j.solener.2017.04.023

Sandnes, B., & Rekstad, J. (2002). A photovoltaic/thermal (PV/T) collector with a polymer absorber plate. Experimental study and analytical model. Solar Energy, 72(1), 63-73. https://doi.org/10.1016/s0038-092x(01)00091-3

Sardarabadi, M., Passandideh-Fard, M., & Zeinali Heris, S. (2014). Experimental investigation of the effects of silica/water nanofluid on PV/T (photovoltaic thermal units). Energy, 66, 264-272. https://doi.org/10.1016/j.energy.2014.01.102

Shyam, Tiwari, G., Fischer, O., Mishra, R., & Al-Helal, I. (2016). Performance evaluation of N-photovoltaic thermal (PVT) water collectors partially covered by photovoltaic module connected in series: An experimental study. Solar Energy, 134, 302-313. https://doi.org/10.1016/j.solener.2016.05.013

Silva, D. V. e., Silva, J. R. B. da., Oliveira, S. R. de., Andrade, R. O. de., Figueiredo, C. F. V. de., Sousa, G. de M., Costa, M. M. L. da., Formiga, A. C. de S., Oliveira, F. F. D. de., Oliveira, P. A. T. de., Nascimento, R. R. A., & Medeiros, R. L. B. de. (2020). Estudo da viabilidade econômica de uma usina fotovoltaica em uma instituição de educação superior no semiárido paraibano. Research, Society and Development, 9(11), e4879119886. https://doi.org/10.33448/rsd-v9i11.9886

Silva, S. T., & Sousa, N. G. (2020). Uso da energia solar como fonte alternativa para o aquecimento de utilidades: simulação e controle. Research, Society and Development, 9(3), e188932730. https://doi.org/10.33448/rsd-v9i3.2730

Singh, D., Yadav, J., Dwivedi, V., Kumar, S., Tiwari, G., & Al-Helal, I. (2016). Experimental studies of active solar still integrated with two hybrid PVT collectors. Solar Energy, 130, 207-223. https://doi.org/10.1016/j.solener.2016.02.024

Solarex (1999). MSX-77 and MSX-83 Photovoltaic Modules.

Sreeraj, E., Chatterjee, K., & Bandyopadhyay, S. (2013). One-Cycle-Controlled Single-Stage Single-Phase Voltage-Sensorless Grid-Connected PV System. IEEE Transactions on Industrial Electronics, 60(3), 1216-1224. https://doi.org/10.1109/tie.2012.2191755

Tripathi, R., & Tiwari, G. (2017). Annual performance evaluation (energy and exergy) of fully covered concentrated photovoltaic thermal (PVT) water collector: An experimental validation. Solar Energy, 146, 180-190. https://doi.org/10.1016/j.solener.2017.02.041

Tripathy, M., Yadav, S., Panda, S., & Sadhu, P. (2017). Performance of building integrated photovoltaic thermal systems for the panels installed at optimum tilt angle. Renewable Energy, 113, 1056-1069. https://doi.org/10.1016/j.renene.2017.06.052

van Helden, W., van Zolingen, R., & Zondag, H. (2004). PV thermal systems: PV panels supplying renewable electricity and heat. Progress In Photovoltaics: Research and Applications, 12(6), 415-426. https://doi.org/10.1002/pip.559

von Roedern, B., & Ullal, H. (2008). “The role of polycrystalline thin-film PV technologies in competitive PV module markets”. 2008 33Rd IEEE Photovolatic Specialists Conference. https://doi.org/10.1109/pvsc.2008.4922493

Yandri, E. (2017). The effect of Joule heating to thermal performance of hybrid PVT collector during electricity generation. Renewable Energy, 111, 344-352. https://doi.org/10.1016/j.renene.2017.03.094

Published

11/06/2021

How to Cite

MEDEIROS, R. R. B.; LIMA, A. V. N. A.; DINIZ, G. F.; MELO, V. M.; SOUZA, L. G. M. de; SILVA, K. C. G. da. Performance study of a hybrid photovoltaic/thermal system. Research, Society and Development, [S. l.], v. 10, n. 7, p. e1210716156, 2021. DOI: 10.33448/rsd-v10i7.16156. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/16156. Acesso em: 18 apr. 2024.

Issue

Section

Engineerings