Global trends for patulin adsorption: A review

Authors

DOI:

https://doi.org/10.33448/rsd-v10i6.16162

Keywords:

Detoxification; Biological methods; Mycotoxins; Bacteria.

Abstract

Patulin is a toxic metabolite produced by several species of fungi. The species that are responsible for the production of patulin enter fruits through bruised and broken skin, causing contamination. Apple-derived products are considered to be by far the most significant dietary sources of patulin. According to the literature, three strategies have been used to break down or remove patulin in food, such as physical, chemical, and biological methods. Degradation of patulin by microorganisms or biodegradation enzymes is an efficient and promising method for the removal of patulin from food. The incidence of patulin contamination continues to be high, despite global efforts to reduce the levels of this mycotoxin at each stage of the fruit production process. Its transformation into other compounds has been reported. However, the toxicities of its byproducts as deoxypatulinic acid, ascladiol, and hydroascladiol should be subjected to an intensive study.

References

Abia, W. A., Warth, B. Ezekiel, C. N., Sarkanj, B., Turner, P. C., Marko, D., Krska, R., & Sulyok, M. (2017). Uncommon toxic microbial metabolite patterns in traditionally home-processed maize dish (fufu) consumed in rural Cameroon. Food and Chemical Toxicology, 107, 10-19. https://doi.org/10.1016/j.fct.2017.06.011

Basso, T. (2019). Quantificação de patulina em sucos de maçã disponíveis no mercado Sul brasileiro. Dissertação, Faculdade de Ciências da Saúde, Porto, 2019.

Bayraç, C. & Camizci, G. (2019). Adsorptive removal of patulin from apple juice via sulfhydryl-terminatedmagnetic bead-based separation. Journal of Hazardous Materials, 366, 413-422. https://doi.org/10.1016/j.jhazmat.2018.12.001

Diao, E., Hou, H., Hu, W., Dong, H., & Li, X. (2018). Removing and detoxifying methods of patulin: A review. Trends in Food Science & Technology, 81, 139-145. https://doi.org/10.1016/J.TIFS.2018.09.016

Gonçalves, A., Palumbo, R., Guimarães, A., Gkrillas, A., Dall Asta, C., Dorne, J. L., Battilani, P., & Venâncio, A. (2019). The Route of Mycotoxins in the Grape Food Chain. American Journal of Enology and Viticulture, 71(2), 89-104 . https://doi: 10.5344/ajev.2019.19039

Iqbal, S. Z., Malik, S., Asi, M. R., Selamat, J., & Malik, N. (2018). Natural occurrence of patulin in different fruits, juices and smoothies and evaluation of dietary intake in Punjab, Pakistan. Food Control, 84, 370-374 . https://doi.org/10.1016/j.foodcont.2017.08.024

Ji, X., Li, R., Yang, H., Qi, P., Xiao, Y., & Qian, M. (2017). Occurrence of patulin in various fruit products and dietary exposure assessment for consumers in China. Food Control, 78, 100-107. https://doi.org/10.1016/j.foodcont.2017.02.044

Li, X., Tang, H., Yang, C., Meng, X., & Liu, B. (2019). Detoxification of mycotoxin patulin by the yeast Rhodotorula mucilaginosa. Food Control, 96, 47-52. https://doi.org/10.1016/j.foodcont.2018.08.029

Ramalingam, S. & Bahuguna, A., & Kim, M. (2019). The effects of mycotoxin patulin on cells and cellular componentes. Trends in Food Science and Technology, 83, 99-113. https://doi.org/10.1016/j.tifs.2018.10.010

Qiu, Y., Guo, H., Guo, C., Zheng, J., Yue, T., & Yuan, Y. (2018). One-step preparation of nano-Fe3O4 modified inactivated yeast for the adsorption of patulin. Food Control, 86, 310-318. https://doi.org/10.1016/j.foodcont.2017.10.005

Qiu, Y., Zhang, Y., Wei, J., Gu, Y., Yue, T., & Yuan, Y. (2020). Thiol-functionalized inactivated yeast embedded in agar aerogel for highly efficient adsorption of patulin in apple juice. Journal of Hazardous Materials, 388, 121802. https://doi.org/10.1016/j.jhazmat.2019.121802.

Rodríguez-Bencomo, J. J., Sanchis, V., Viñas, I., Martín-Belloso, O., & Soliva-Fortuny, R. (2020). Formation of patulin-glutathione conjugates induced by pulsed light: A tentative strategy for patulin degradation in apple juices. Food Chemistry, 315, 126283. https://doi.org/10.1016/j.foodchem.2020.126283

Sajid, M., Mehmood, S., Niu, C., Yuan, Y., & Yue, T. (2018). Effective Adsorption of Patulin from Apple Juice by Using Non-Cytotoxic Heat-Inactivated Cells and Spores of Alicyclobacillus Strains. Toxins 10(9): 344. https://doi.org/10.3390/toxins10090344.

Saleh, I. & Goktepe, I. (2019 a) Health risk assessment of Patulin intake through apples and apple-based foods sold in Qatar. Helyon, 5(11) 02754. https://doi.org/10.1016/j.heliyon.2019.e02754

Saleh, I., & Goktepe, I. (2019 b). The characteristics, occurrence, and toxicological effects of patulin. Food Chemical Toxicology, 129, 301-311. https://doi.org/10.1016/j.fct.2019.04.036

Tang, H., Li, X., Zhang, F., Meng, X., & Liu, B. (2019). Biodegradation of the mycotoxin patulin in apple juice by Orotate phosphoribosyltransferase from Rhodotorula mucilaginosa. Food Control, 100, 158-164. https://doi.org/10.1016/j.foodcont.2019.01.020

Vidal, A., Ouhibi, S., Ghali, R., Hedhili, A., De Saeger, S., & De Boerve, M. (2019). The mycotoxin patulin: An updated short review on occurrence, toxicity and analytical challenges. Food and Chemical Toxicology, 129, 249-256. https://doi.org/10.1016/j.fct.2019.04.048

Wang, L., Yue, T., Yuan, Y., Wang, Z., Ye, M., & Cai, R. (2015). A new insight into the adsorption mechanism of patulin by the heat-inactive lactic acid bacteria cells. Food Control, 50, 104–110. http://dx.doi.org/10.1016/j.foodcont.2014.08.041

Wei, C., Yo, L., Qiao, N., Zhao, N., Zhang, H., Zhai, Q., Tian, F., & Chen, W. (2020). Progress in the distribution, toxicity, control, and detoxification of patulin: A review. Toxicon, 184, 83-93. https://doi.org/10.1016/j.toxicon.2020.05.006

Yuan, Y., Wang, X., Hatab, S., Wang, Z., Wang, Y., Luo, Y., & Yue, T. (2014). Patulin reduction in apple juice by inactivated Alicyclobacillus spp. Lett Appl Microbiol, 59(6):604-9. doi: 10.1111/lam.12315. Epub 2014 Aug 28. PMID: 25130934.

Xiao, Y., Liu, B., Wang, Z., Han, C., Meng, X., & Zhang, F. (2019). Effective degradation of the mycotoxin patulin in pear juice by porcine pancreatic lipase. Food and Chemical Toxicology , 133, 110769. https://doi.org/10.1016/j.fct.2019.110769

Zhao, M., Shao, H., He, Y., Li, H., Yan, M., Jiang, Z., Wang, J., Abd El-Aty, A. M., Hacimüftüoglu, A., Yan, F., Wang, Y., & She, Y. (2019). The determination of patulin from food samples using dual-dummy molecularly imprinted solid-phase extraction coupled with LC-MS/MS. Journal of Chromatography B, 1125, 121714. https://doi.org/10.1016/j.jchromb.2019.121714

Zhang Z, Li, M, Wu C, & Peng B. (2019). Physical adsorption of patulin by Saccharomyces cerevisiae during fermentation. Journal Food Science and Technology, 56, 2326-2331. http://doi:10.1007/s13197-019-03681-1

Zheng, X., Li, Y., Zhang, H., Apaliya, Z. M., Zhang, X., Zhao, L., Jiang, Z., Yang, Q., & Gu, X. (2018). Identification and toxicological analysis of products of patulin degradation by Pichia caribbica. Biological Control, 123, 127-136. https://doi.org/10.1016/j.biocontrol.2018.04.019.

Zheng, X., Wei, W., Rao, S., Gao, L., Li, H., & Yang, Z. (2020). Degradation of patulin in fruit juice by a lactic acid bacteria strain Lactobacillus casei YZU01. Food Control, 112, 107147. https://doi.org/10.1016/j.foodcont.2020.107147

Zhu, Y., Koutchma, T., Warriner, K., & Zhou, T. (2014). Reduction of patulin in apple juice products by UV light of different wavelengths in the UVC range. Journal of Food Protection, 77(6), 963-971. https://doi.org/10.4315/0362-028X.JFP-13-429

Downloads

Published

10/06/2021

How to Cite

GOMES, I. A. .; MARKOVÁ, E.; SILVA, J. P. L. da .; VENÂNCIO, A.; FREITAS-SILVA, O. Global trends for patulin adsorption: A review. Research, Society and Development, [S. l.], v. 10, n. 6, p. e58310616162, 2021. DOI: 10.33448/rsd-v10i6.16162. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/16162. Acesso em: 4 jan. 2025.

Issue

Section

Agrarian and Biological Sciences