Evaluation of casein supplementation on periodontal and mandibular bone of rats fed standard diet and cafeteria diet

Authors

DOI:

https://doi.org/10.33448/rsd-v10i7.16169

Keywords:

Cafeteria diet; Dairy protein; Casein; Alveolar bone resorption; Periodontium.

Abstract

Objective: To evaluate the effect of casein supplementation on the periodontium and mandibular bone of rats fed a standard diet and a cafeteria diet. Methodology: 24 Wistar rats were divided into four experimental groups: normal diet (DN), normal diet with casein (DNC), cafeteria diet (DC) and cafeteria diet with casein (DCC). The DNC and DCC groups received 2 mL of micellar casein from the 60th to the 90th day. At 90 days, the animals were orthouthanized and the materials were collected for analysis. Results: The animals in the DC and DCC groups showed a higher adiposity index compared to DN and DNC (p <0001). The DCC group had a significantly lower HDL cholesterol level than DN (p <0.0092). In the radiographic analysis of the animals' hemimandibula, no difference was observed in relation to pixel density, however, there was a difference in the size of the anterior mandibular portion between DCC and DNC (p <0.0196) and DCC and DN (p <0.0039). Histologically, there was a reduction in blood vessels, both in alveolar bone (p = 0.0033), furcation bone (p <0.0001) and periodontal ligament (p = 0.0001) in CHD. In addition, in the alveolar bone there was a decrease in osteocytes in the DCC group in relation to the CND (p = 0.0198). Conclusions: The increase in adiposity contributed to the decrease of blood vessels and osteocytes in the bone tissue of rats, despite not influencing inflammation. This effect was independent of casein. Therefore, casein supplementation in rats submitted to a cafeteria diet was not effective in decreasing the accumulation of adipose tissue, as well as not positively interfering in the bone metabolism of the hemimandibula.

References

Afolabi, H. A., bin Zakariya, Z., Shokri, A. B. A., Hasim, M. N. B. M., Vinayak, R., Afolabi-Owolabi, O. T., Elesho, R. F. (2020). The relationship between obesity and other medical comorbidities. Obes Med, (17), 100164.

Barrett, P., Mercer, J. G., & Morgan, P. J. (2016). Preclinical models for obesity research. Dis Model Mech, 9 (11), 1245-1255.

Benayahu, D., Wiesenfeld, Y., Sapir‐Koren, R. (2019). How is mechanobiology involved in mesenchymal stem cell differentiation toward the osteoblastic or adipogenic fate? J Cell Physiol, 234 (8), 12133-12141.

Bernardis, L. L. & Patterson, B. D. (1968). Correlation between 'Lee index' and carcass fat content in weanling and adult female rats with hypothalamic lesions. J Endocrinol, (40), 527–528.

Brin, I., Michaeli, Y., & Steigman, S. (1990). Long-term Effects of Orthodontic Forces on the Morphology of the Rat-incisor Socket and its Location in the Mandible. J Dent Res, 69 (12), 1834-1838.

Cao, J.J. (2011). Effects of obesity on bone metabolism. J Orthop Surg Res, (6), 30-36.

Chia, J. S. J., McRae, J. L., Enjapoori, A. K., Lefèvre, C. M., Kukuljan, S., & Dwyer, K. M. (2018). Dietary Cows' Milk Protein A1 Beta-Casein Increases the Incidence of T1D in NOD Mice. Nutrients, 10 (9), 1291.

Coltri, B. M., Costa, K. F. D., Pontillo, V., Bonfleur, M. L., Brancalhão, R. M. C., Beu, C. C. L. et al. (2017). Avaliação morfométrica da influência da obesidade sobre o tecido gengival de ratos com periodontite experimental. Rev Bras Ciênc Saúde, 21 (2), 127-132.

Compston, J. E., Flahive, J., Hosmer, D. W., Watts, N. B., Siris, E. S., & Silverman, S. (2014). Relationship of Weight, Height, and Body Mass Index With Fracture Risk at Different Sites in Postmenopausal Women: The Global Longitudinal Study of Osteoporosis in Women (GLOW). J Bone Miner Res, 29 (2), 487–93.

Compston, J. E., Watts, N. B., Chapurlat, R., Cooper, C., Boonen, S., Greenspan, S., Pfeilschifter, J., Silverman, S., Díez-Pérez, A., Lindsay, R., & Saag, K. G. (2011). Obesity is not protective against fracture in postmenopausal women: GLOW. Am J Med, 124(11), 1043-50.

Dalmolin, A. C., Rosa, A. R., Grassiolli, S., de Miranda Soares, M. A., & Omar, N. F. (2018). Mineral Contents and Somatometric Parameters in the Hemimandible, Tibia and Incisor of Rats Submitted to a Hypothalamic Obesity Condition. J Obes Chronic Dis, 2 (2), 57-61.

Didek, D. Cordeiro, M. M., Xavier, J. L. D. P., Ribeiro, P. R., Rentz, T., Franco, G. C. N., et al. (2019). Association Between Exercise and Treatment with Liraglutide in Obese Rats by Cafeteria Diet. Braz Arch. Biol Technol, (62), e19180563.

Duque, G., Ahmed, A. S., Rivas, D., Miard, S., Ferland, G., Picard, F., & Gaudreau, F. (2020). Differential Effects of Long-Term Caloric Restriction and Dietary Protein Source on Bone and Marrow Fat of the Aging Rat. J Gerontol, 75 (11), 2031–2036.

Eller, L. & Reimer, R. (2018). Dairy Protein Attenuates Weight Gain in Obese Rats Better Than Whey or Casein Alone. Obesity, (18), 704–711.

Felson, D. T., Zhang, Y., Hannan, M. T., & Anderson, J. J. (1993). Effects of weight and body mass index on bone mineral density in men and women: The Framingham study. J Bone Miner Res, 8 (5), 567–73.

Fried, A., Manske, S., Eller, L., Lorincz, C., Reimer, R., & Zernicke, R. (2012). Skim milk powder enhances trabecular bone architecture compared with casein or whey in diet-induced obese rats. Nutrition, (28), 31–335.

Gkastaris, K., Goulis, D. G., Potoupnis, M., Anastasilakis, A. D., & Kapetanos, G. (2020). Obesity, osteoporosis and bone metabolism. J Musculoskelet Neuronal Interact, 20 (3), 372.

Gomez-Ambrosi, J., Rodriguez, A., Catalan, V., & Frühbeck, G. (2008). The bone-adipose axis in obesity and weight loss. Obes Surg, 18 (9), 1134-1143.

Greco, E. A., Fornari, R., Rossi, F., Santiemma, V., Prossomariti, G., Annoscia, C., & Migliaccio, S. (2010). Is obesity protective for osteoporosis? Evaluation of bone mineral density in individuals with high body mass index. Int J Clin Pract, 64 (6), 817-820.

Hall, W., Millward, D., Long, S., & Morgan, L. (2003). Casein and whey exert different effects on plasma amino acid profiles, gastrointestinal hormone secretion and appetite. Br J Nut, 89 (2), 239–248.

Healy, N. P., Kirwan, A. M., McArdle, M. A, Holohan, K., Nongonierma, A. B., Keane, D., et al. (2016). A casein hydrolysate protects mice against high fat diet induced hyperglycemia by attenuating NLRP3 inflammasome-mediated inflammation and improving insulin signaling. Mol Nutr Food Res. 60 (11), 2421-2432.

Jacobsen, B. B., Leopoldo, A. P. L., Cordeiro, J. P., Campos, D. H. S. D., Nascimento, A. F. D., Sugizaki, M. M., et al. (2017). Cardiac, metabolic and molecular profiles of sedentary rats in the initial moment of obesity. Arq Bras Cardiol, 109 (5), 432-439.

Khojastepour, L., Mohammadzadeh, S., Jazayeri, M., & Omidi, M. (2017). In vitro Evaluation of the Relationship between Gray Scales in Digital Intraoral Radiographs and Hounsfield Units in CT Scans. J Biomed Phys Eng, 7 (3), 1-10.

Kim, S. P., Frey, J. L., Li, Z., Kushwaha, P., Zoch, M. L., Tomlinson, R. E., & Riddle, R. C. (2017). Sclerostin influences body composition by regulating catabolic and anabolic metabolism in adipocytes. Proc. Natl. Acad, 114 (52), E11238-E11247.

Kouw, I. W., Holwerda, A. M., Trommelen, J., Kramer, I. F., Bastiaanse, J., Halson, S. L., & van Loon, L. J. (2017). Protein ingestion before sleep increases overnight muscle protein synthesis rates in healthy older men: a randomized controlled trial. J Nutr, 147 (12), 2252-2261.

Lillefosse, H. H., Tastesen, H. S., Du, Z. Y., Ditlev, D. B., Thorsen, F. A., Madsen, L., & Liaset, B. (2013). Hydrolyzed casein reduces diet-induced obesity in male C57BL/6J mice. J Nutr, 143 (9), 1367-1375.

Marine-Casado, R., C. Domenech-Coca, C., Del Bas, J. M., Bladé, C., Arola, L., & Caimari, A. (2018). Intake of an Obesogenic Cafeteria Diet Affects Body Weight, Feeding Behavior, and Glucose and Lipid Metabolism in a Photoperiod-Dependent Manner in F344 Rats. Front Physiol, (9), 1639.

Messer, J. G., Jiron, J. M., Chen, H. Y., Castillo, E. J., Mendieta Calle, J. L., Reinhard, M. K., et al. (2017). Prevalence of food impaction-induced periodontitis in conventionally housed marsh rice rats (Oryzomys palustris). Comparative Med, 67 (1), 43-50.

Messer, J. G., La, S., Kipp, D. E., Castillo, E. J., Yarrow, J. F., Jorgensen, M., et al. (2019). Diet-induced Generalized Periodontitis in Lewis Rats. Comparative Med, 69 (5), 384-400.

Mirzababaei, A., Mirzaei, K., Khorrami-Nezhad, L., Maghbooli, Z., & Keshavarz, S. A. (2017). Metabolically healthy/unhealthy components may modify bone mineral density in obese people. Arch Osteoporos, 12 (1), 1-9.

Mundim, M. B. V., Dias, D. R., Costa, R. M., Leles, C. R., Azevedo-Marques, P. M., & Ribeiro Rotta R. F. (2016). Intraoral radiographs texture analysis for dental implant planning. Comput Methods Programs Biomed, (36), 89-96.

Nahin, R. L., Barnes, P. M., Stussman, B. J., & Bloom, B. (2009). Costs of complementary and alternative medicine (CAM) and frequency of visits to CAM practitioners: United States, 2007. Natl Health Stat Report, 30 (18), 1-14.

Proietto J. (2020). Obesity and Bone. F1000Res, 9 (1), 1-7.

Ramos-Junior, E. S., Leite, G. A., Carmo-Silva, C. C., Taira, T. M., & Neves, K. B. (2017). Adipokine chemerin bridges metabolic dyslipidemia and alveolar bone loss in mice. J Bone Miner Res, 32 (5), 974-984.

Rauch, A., Haakonsson, A. K., Madsen, J. G. S., & Mandrup, S. (2019). Osteogenesis depends on commissioning of a network of stem cell transcription factors that act as repressors of adipogenesis. Nat Genet, (51), 716–727.

Rowe, P., Koller, A., & Sharma, S. (2020). Physiology, bone remodeling. Treasure Island (FL): StatPearls Publishing.

Sawin, E., Stroup, B., Murali, S., O'Neill, L., Ntambi, J., & Ney, D. (2016). Differential Effects of Dietary Fat Content and Protein Source on Bone Phenotype and Fatty Acid Oxidation in Female C57Bl/6 Mice. PLOS ONE, 32-33.

Schetz, M., De Jong, A., Deane, A. M., Druml, W., Hemelaar, P., Pelosi, P., Pickkers, P., Reintam-Blaser, A., Roberts, J., Sakr, Y., & Jaber, S. (2019). Obesity in the critically ill: a narrative review. Intensive Care Med, 45 (6), 757-769.

Schoemaker, M. H., Kleemann, R., Morrison, M. C., Verheij, J., Salic, K., van Tol, E. A., et al. (2017). A casein hydrolysate based formulation attenuates obesity and associated non-alcoholic fatty liver disease and atherosclerosis in LDLr-/-.Leiden mice. PLoS One, 12 (7), e0180648, 2017.

So, I., & Yadav, H. (2020). Obesity and Its Complications Pathogenesis. In: Pathophysiology of Obesity-Induced Health Complications. Springer, Cham, (19), 43-56.

Tappia, P. S., & Defried, D. (2020). Prevalence, Consequences, Causes and Management of Obesity. In: Pathophysiology of Obesity-Induced Health Complications. Springer, Cham, (19), 3-22.

Walsh, J. S., & Vilaça, T. (2017). Obesity, Type 2 Diabetes and Bone in Adults. Calcif Tissue Int, (100), 528–35.

Wong, S. K., Chin, K. Y., Suhaimi, F. H., Ahmad, F., & Ima-Nirwana, S. (2018). Effects of metabolic syndrome on bone mineral density, histomorphometry and remodelling markers in male rats. PLoS One, 13(2), e0192416.

Zhou, M., Li, S., & Pathak, J. L. (2019). Pro-inflammatory Cytokines and Osteocytes. Curr Osteoporos, (17), 97–104.

Published

11/06/2021

How to Cite

RIZZI, M.; PASQUALOTTO, K. R. .; DELFRATE, G.; MROCZEK, T.; SOISTAK, A. P. .; DAVID, L. P.; CLAUDINO, M.; SCOMPARIN, D. X. Evaluation of casein supplementation on periodontal and mandibular bone of rats fed standard diet and cafeteria diet. Research, Society and Development, [S. l.], v. 10, n. 7, p. e1410716169, 2021. DOI: 10.33448/rsd-v10i7.16169. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/16169. Acesso em: 22 nov. 2024.

Issue

Section

Health Sciences