Alternatives solutions to reduce Parkinson’s disease pathological tremors: A state-of-art review
DOI:
https://doi.org/10.33448/rsd-v10i7.16346Keywords:
Parkinson’s Disease; Tremor; Treatment.Abstract
Parkinson's disease is the second most common neurodegenerative disease in the world, with tremor being one of its main symptoms. The existing treatments for tremors have several restrictions and side effects that end up limiting their use. Thus, the idea of alternative treatments, using engineering, arises, which are less invasive and without side effects. The scope of this work will be to present and discuss the main solutions involving engineering for the reduction of pathological tremors that have been found in recent years. For the purpose of following a research methodology, keywords were used to perform searches in some of the main scientific databases, and with some filters applied it was possible to identify 26 articles dealing with the topic we wish to study. As a result, it was possible to notice a considerable increase in the study of the subject in recent years and to observe the existence of 4 categories of alternative treatments: functional electrical stimulation (FES), mechanical actuators, damped systems, and intelligent materials. After the research, it was concluded that the solutions using FES and mechanical actuators were the most studied and those that are in more advanced stages of testing, having products on the market that use FES as a treatment for pathological tremors.
References
Abbasi, M., & Afsharfard, A. (2018). Modeling and experimental study of a hand tremor suppression system. Mechanism and Machine Theory, 126, 189–200. https://doi.org/10.1016/j.mechmachtheory.2018.04.009
Altman, T., Delp, S., Paderi, J., Rajasekhar, V., & Rosenbluth, K. (2019). Devices for controlling tremor (European patent office Patent No EP3498332A1).
Armstrong, M. J., & Okun, M. S. (2020). Diagnosis and Treatment of Parkinson Disease: A Review. JAMA, 323(6), 548. https://doi.org/10.1001/jama.2019.22360
Arnold, A. S., Rosen, M. J., & Aisen, M. L. (1993). Evaluation of a controlled-energy-dissipation orthosis for tremor suppression. Journal of Electromyography and Kinesiology, 3(3), 131–148. https://doi.org/10.1016/S1050-6411(05)80001-X
Botelho, L. L. R., Cunha, C. C. de A., & Macedo, M. (2011). O método da revisão integrativa nos estudos organizacionais. Gestão e Sociedade, 5(11), 121–136. https://doi.org/10.21171/ges.v5i11.1220
Brittain, J.-S., Probert-Smith, P., Aziz, T. Z., & Brown, P. (2013). Tremor Suppression by Rhythmic Transcranial Current Stimulation. Current Biology, 23(5), 436–440. https://doi.org/10.1016/j.cub.2013.01.068
Buki, E., Katz, R., Zacksenhouse, M., & Schlesinger, I. (2018). Vib-bracelet: A passive absorber for attenuating forearm tremor. Medical & Biological Engineering & Computing, 56(5), 923–930. https://doi.org/10.1007/s11517-017-1742-7
Cala Trio. (2020). Patient FAQs. Cala Trio. https://calatrio.com/patients/frequently-asked-questions/
Campbell, W. W. (2014). DeJong: O exame neurológico (7o ed, Vol. 1–1). Guanabara Koogan.
Case, D., Taheri, B., & Richer, E. (2013). Design and Characterization of a Small-Scale Magnetorheological Damper for Tremor Suppression. IEEE/ASME Transactions on Mechatronics, 18(1), 96–103. https://doi.org/10.1109/TMECH.2011.2151204
Copur, E. H., Freeman, C. T., Chu, B., & Laila, D. S. (2016). System identification for FES-based tremor suppression. European Journal of Control, 27, 45–59. https://doi.org/10.1016/j.ejcon.2015.12.003
Dantas de sá, M. R., Fonseca Júnior, A. W. N. da, Nascimento, A. M. do, & Silva, A. A. (2019). Simulação de Um Dispositivo Giroscópio Absorvedor do Tremor da Doença de Parkinson. In II Simpósio de pós-graduação em engenharia mecânica da universidade federal de campina grande: Coletânia de artigos (1o ed). Poisson.
Dideriksen, J. L., Laine, C. M., Dosen, S., Muceli, S., Rocon, E., Pons, J. L., Benito-Leon, J., & Farina, D. (2017). Electrical Stimulation of Afferent Pathways for the Suppression of Pathological Tremor. Frontiers in Neuroscience, 11. https://doi.org/10.3389/fnins.2017.00178
Dosen, S., Muceli, S., Dideriksen, J. L., Romero, J. P., Rocon, E., Pons, J., & Farina, D. (2015). Online Tremor Suppression Using Electromyography and Low-Level Electrical Stimulation. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 23(3), 385–395. https://doi.org/10.1109/TNSRE.2014.2328296
Elble, R. J. (2009). Tremor: Clinical Features, Pathophysiology, and Treatment. Neurologic Clinics, 27(3), 679–695. https://doi.org/10.1016/j.ncl.2009.04.003
Freeman, C. T., Sampson, P., Burridge, J. H., & Hughes, A.-M. (2015). Repetitive control of functional electrical stimulation for induced tremor suppression. Mechatronics, 32, 79–87. https://doi.org/10.1016/j.mechatronics.2015.10.008
Fromme, N. P., Camenzind, M., Riener, R., & Rossi, R. M. (2020). Design of a lightweight passive orthosis for tremor suppression. Journal of NeuroEngineering and Rehabilitation, 17(1), 47. https://doi.org/10.1186/s12984-020-00673-7
Gillard, D. M., Cameron, T., Prochazka, A., & Gauthier, M. J. A. (1999). Tremor suppression using functional electrical stimulation: A comparison between digital and analog controllers. IEEE Transactions on Rehabilitation Engineering, 7(3), 385–388. https://doi.org/10.1109/86.788474
Golan, D., Tashijian, A., J. Armstrong, E., & W. Armstrong, A. (2009). Princípios de farmacologia: A base fisiopatológica da farmacoterapia (3o ed).
Hedera, P., Cibulčík, F., & Davis, T. L. (2013). Pharmacotherapy of Essential Tremor. Journal of Central Nervous System Disease, 5, JCNSD.S6561. https://doi.org/10.4137/JCNSD.S6561
Herrnstadt, G., & Menon, C. (2016). Voluntary-Driven Elbow Orthosis with Speed-Controlled Tremor Suppression. Frontiers in Bioengineering and Biotechnology, 4. https://doi.org/10.3389/fbioe.2016.00029
Isaacson, S. H., Peckham, E., Tse, W., Waln, O., Way, C., Petrossian, M. T., Dahodwala, N., Soileau, M. J., Lew, M., Dietiker, C., Luthra, N., Agarwal, P., Dhall, R., Morgan, J., Calakos, N., Zesiewicz, T. A., Shamim, E. A., Kumar, R., LeWitt, P., … Pahwa, R. (2020). Prospective Home-use Study on Non-invasive Neuromodulation Therapy for Essential Tremor. Tremor and Other Hyperkinetic Movements, 10(0), 29. https://doi.org/10.5334/tohm.59
Kelley, C. R., & Kauffman, J. L. (2020). Tremor-Active Controller for Dielectric Elastomer-Based Pathological Tremor Suppression. IEEE/ASME Transactions on Mechatronics, 25(2), 1143–1148. https://doi.org/10.1109/TMECH.2020.2972884
Kotovsky, J., & Rosen, M. J. (1998). Wearable Tremor-suppression Orthosis. Journal of Rehabilitation Research and Development, 35(4), 26.
Moore, G., & Bronte-Stewart, H. (2005). The poetics of tremor. In Modeling in the neuroscience: From biological systems to neuromimeticrobotics (p. 581–597).
Pahwa, R., Dhall, R., Ostrem, J., Gwinn, R., Lyons, K., Ro, S., Dietiker, C., Luthra, N., Chidester, P., Hamner, S., Ross, E., & Delp, S. (2019). An Acute Randomized Controlled Trial of Noninvasive Peripheral Nerve Stimulation in Essential Tremor. Neuromodulation: Technology at the Neural Interface, 22(5), 537–545. https://doi.org/10.1111/ner.12930
Pledgie, S., Barner, K. E., Agrawal, S. K., & Rahman, T. (2000). Tremor suppression through impedance control. IEEE Transactions on Rehabilitation Engineering, 8(1), 53–59. https://doi.org/10.1109/86.830949
Poewe, W., Seppi, K., Tanner, C. M., Halliday, G. M., Brundin, P., Volkmann, J., Schrag, A.-E., & Lang, A. E. (2017). Parkinson disease. Nature Reviews Disease Primers, 3(1), 17013. https://doi.org/10.1038/nrdp.2017.13
Popović Maneski, L., Jorgovanović, N., Ilić, V., Došen, S., Keller, T., Popović, M. B., & Popović, D. B. (2011). Electrical stimulation for the suppression of pathological tremor. Medical & Biological Engineering & Computing, 49(10), 1187–1193. https://doi.org/10.1007/s11517-011-0803-6
Rocon, E., Manto, M., Pons, J., Camut, S., & Belda, J. M. (2007). Mechanical suppression of essential tremor. The Cerebellum, 6(1), 73–78. https://doi.org/10.1080/14734220601103037
Taheri, B., Case, D., & Richer, E. (2014). Robust Controller for Tremor Suppression at Musculoskeletal Level in Human Wrist. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 22(2), 379–388. https://doi.org/10.1109/TNSRE.2013.2295034
Taheri, B., Case, D., & Richer, E. (2015). Adaptive Suppression of Severe Pathological Tremor by Torque Estimation Method. IEEE/ASME Transactions on Mechatronics, 20(2), 717–727. https://doi.org/10.1109/TMECH.2014.2317948
Ture Savadkoohi, A., Lamarque, C.-H., & Goossaert, C. (2021). Nonlinear passive tremor control of human arm. Mechanical Systems and Signal Processing, 146, 107041. https://doi.org/10.1016/j.ymssp.2020.107041
Zahedi, A., Wang, Y., Martinez-Hernandez, U., & Zhang, D. (2021). A wearable elbow exoskeleton for tremor suppression equipped with rotational semi-active actuator. Mechanical Systems and Signal Processing, 157, 107674. https://doi.org/10.1016/j.ymssp.2021.107674
Zamanian, A. H., & Richer, E. (2019). Adaptive notch filter for pathological tremor suppression using permanent magnet linear motor. Mechatronics, 63, 102273. https://doi.org/10.1016/j.mechatronics.2019.102273
Zesiewicz, T. A., Elble, R., Louis, E. D., Hauser, R. A., Sullivan, K. L., Dewey, R. B., Ondo, W. G., Gronseth, G. S., & Weiner, W. J. (2008). Practice Parameter: CME Therapies for essential tremor. American Academy of Neurology, 14.
Zhang, D., Poignet, P., Widjaja, F., & Tech Ang, W. (2011). Neural oscillator based control for pathological tremor suppression via functional electrical stimulation. Control Engineering Practice, 19(1), 74–88. https://doi.org/10.1016/j.conengprac.2010.08.009
Zhang, Z., Chu, B., Liu, Y., Ren, H., & Owens, D. H. (2019). Wrist tremor suppression based on repetitive control with multi-muscle electrical stimulation⁎⁎This work is supported by the National Natural Science Foundation of China (No. 61803344, 61473265) and the Innovation Research Team of Science & Technology of Henan Province (No. 17IRTSTH-N013). IFAC-PapersOnLine, 52(29), 31–36. https://doi.org/10.1016/j.ifacol.2019.12.617
Zhou, Y., Naish, M. D., Jenkins, M. E., & Trejos, A. L. (2017). Design and validation of a novel mechatronic transmission system for a wearable tremor suppression device. Robotics and Autonomous Systems, 91, 38–48. https://doi.org/10.1016/j.robot.2016.12.009
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Gabriel Silva Vieira; Antonio Almeida Silva; Renato Alexandre Costa de Santana
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.