Photogrammetric plant indices in corn in succession to ground cover crops in Areia, Paraíba (Brazil)
DOI:
https://doi.org/10.33448/rsd-v10i7.16403Keywords:
Coverage plants; Zea mays; Drone; Remote sensing.Abstract
For better control and efficiency of agricultural crops in Brazilian semiarid regions, the use of evaluations with data from remote sensing in conjunction with geographic information systems (GIS) are being widely used. This work aimed to evaluate the response of corn genotypes in a succession cultivation system to vegetation cover plants. The survey was conducted in Areia, Paraíba, Brazil, in the agricultural years of 2018/2019 and 2019/2020. The design was in completely randomized blocks, with four replications, in a 3 × 6 factorial scheme, corresponding to three corn genotypes (Robusto, Pontinha and AG1051) and six cultivation systems [(Brachiaria ruziziensis, millet (Pennisetum glaucum), pigeonpea (Cajanus cajan), Crotalária espectabilis, Crotalária juncea and as witness only the uncovered soil)], totaling 18 treatments. Vegetable indices of Visible Atmospherically Resistant Index, Redness Index, Normalized green-Red Difference Index, Ground Level Image Analysis, Excess Red-Green, Excess Red Vegetative Index, Excess Green Index and the Color Index of Vegetation Extraction were evaluated. The results showed that to observe differences between the corn genotypes, the use of the Excess Red Vegetative Index is indicated. To observe differences in the effect of cover crops on corn, the Normalized green-Red Difference is indicated.
References
Acco, M. (2004). Modelagem de dados do satélite Ikonos II para estimativa de micronutrientes na floresta ombrófila mista montana. Dissertação (Mestrado) – Universidade Federal do Paraná, Centro de Ciências Agrárias, Curitiba.
Alvares, C. A., Stape, J. L., Sentelhas, P. C., Gonçalves, J. L. M., & Sparovek, (2013). Köppen's climate classification map for Brazil. Meteorologische Zeitschrift, 22, 721-728. https://doi.org/10.1127/0941-2948/2013/0507
Backes, K. S. (2010). Variações do índice de vegetação por diferença normalizada (NDVI) do sensor modis associadas a variáveis climáticas para o estado do Rio Grande do Sul. Dissertação (Mestrado) – Universidade Federal de Santa Maria. Santa Maria.
Cruz, A. C. (2020). Estimativa de densidade de plantação de cana de açúcar utilizando o espaço de cor cie lab em imagens de alta resolução espacial provindas de VANTS. Dissertação (Mestrado) – Universidade Estadual Paulista (Unesp), Instituto de Ciência e Tecnologia, Sorocaba.
Embrapa - Empresa Brasileira de Pesquisa Agropecuária (2006). Sistema brasileiro de classificação de solos. Rio de Janeiro: Embrapa, 2. ed.
Gerhardt, T. E., & Silveira, D. T. (2009). Métodos de pesquisa. Editora da UFRGS, Brasil.
Gitelson, A. A., Kaufman, Y. J., Stark, R., & Rundquist, D. (2002). Novel algorithms for remote estimation of vegetation fraction. Remote Sensing of Environment, 80(1), 76-87.
Huete, A. R., & Escadafal, R. (1991). Assessment of biophysical soil properties through spectral decomposition techniques. Remote Sensing of Environment. 35, 149-159.
Hunt Júnior, E. R., Cavigelli, M., Daughtry, C. S. T., Mcmurtrey III, J. E., & Walthall, C. L. (2005). Evaluation of digital photography from model aircraft for remote sensing of crop biomass and nitrogen status. Precision Agriculture, 6, 359-378.
IPA - Empresa Pernambucana de Pesquisa Agropecuária (2008). Recomendações de adubação para o estado de Pernambuco (2ª aproximação). 2.ed. Recife: Empresa Pernambucana de Pesquisa Agropecuária. 198p.
Jannoura, R., Brinkmann, K., Uteau, D., Bruns, C., & Joergensen, R. C. (2015). Monitoring of crop biomass using true colour aerial photographs taken from a remote controlled hexacopter. Biosystems Engineering, 129, 341-351.
Kalisch, L., Dalmas, F. B., Paranhos Filho, A. C., & Encina, C. C. (2020). Análise da cobertura vegetal da RPPN Fazenda Uhumirim por meio de sensoriamento remoto. Research, Society and Development, 9(4): e33942737
Kataoka, T., Kaneko, T., Okamoto, H., & Hata, S. (2001). Crop growth estimation system using machine vision. In: Proceedings 2003 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM 2003). IEEE, 2003. p. b1079-b1083 vol. 2.
Louhaichi, M., Borman, M. M., & Johnson, D. E. (2001). Spatially located platform and aerial photography for documentation of grazing impacts on wheat. Geo car to International, 16(1): 65-70.
Mendoza-Tafolla, R. O., Ontiveros-Capurata, R. E., Juarez-Lopez, P., Alia-Tejacal, I., Lopez-Martinez, V., & Ruiz-Alvarez, O. (2021). Nitrogen and chlorophyll status in romaine lettuce u sing spectral indices from RGB digital images. Zemdirbyste-Agriculture, 108(1): 79-86.
Meyer, G. E., Hindman, T., & Laksmi, K., M. G. (ed.), Deshazer J. A., Machine vision detection parameters for plant species identification. Precision agri540 culture and biological quality, Boston, Massachusetts, USA, 3 4 November, 1998 3543 (November) (1998) 327–335
Meyer, G. E., & Camargo Neto J., (2008). Verification of color vegetation indices for automated crop imaging applications, Computers and Electronics in Agriculture. 63(2), 282-293.
Mumbach, G. L., Kotowski, I. E., Schneider, F. J. A., Mallmann, M. S., Bonfada, E. B., Portela, V. O., Bonfada, E. B., & Kaiser, D. R. (2017). Resposta da inoculação com Azonspirillum brasilense nas culturas de trigo e milho safrinha. Revista Scientia Agraria, 18(2), 97-103.
Pereira, J. L. A. R., Von Pinho, R. G., Souza Filho, A. X., Pereira, M. N., Santos, A. O., & Borges, I. D (2012). Quantitative characterization of corn plant components according to planting time and grain maturity stage. Revista Brasileira de Zootecnia, 41(5), 1110-1117.
Ribeiro, J. E. S., Barbosa, A. J. S., Lopes, S. F., Pereira, W. E., & Albuquerque, M. B. (2018). Seasonal variation in gas exchange by plants of Erythroxylum simonis Plowman. Acta Botanica Brasílica 32, 287-296. https://doi.org/10.1590/0102- 33062017abb0240
Ribeiro, E. S., Faro, B. L. S. O., Nascimento, R. S. C., Carneiro, F. S., Amaral, A. P. M., Bezerra, M. G. S., Amorim, M. B., & Garcia, T. S. (2021). Multitemporal evaluation of the vegetation cover of the Tapirapé biological reserve, Pará. Research, Society and Development, 10(4): e50910414345
Woebbecke, D. M., Meyer, G. E., Von Bargen, K., & Montensen, D. A. (1995). Color indices for weed identification under various soil, residue, and lighting conditions. Transactions of the ASAE, 38(1), 259-269.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Tayron Rayan Sobrinho Costa; Marianne Costa de Azevedo; José Eldo Costa; Valéria Fernandes de Oliveira Sousa; Antonio Veimar da Silva; Fábio Mielezrski
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.