Tooth agenesia might be associated with palatine rugae pattern in a tooth Brazilians population

Authors

DOI:

https://doi.org/10.33448/rsd-v10i7.16487

Keywords:

Palate; Tooth agenesis; Maxillofacial development.

Abstract

Tooth and palate development share several molecules during their formation, which could explain some recent studies suggesting that tooth agenesis is associated with palatine rugae pattern.   Therefore, the purpose of the se cross sectional study was to investigate the association between palatine rugae phenotypes and tooth agenesis in Brazilian patients. After applying inclusion and exclusion criteria 83 records from orthodontic patients were evaluated. Tooth agenesis cases were diagnosed by evaluation of panoramic radiographs and by anamnesis. The casts and intraoral occlusal photography of each patient were used to evaluated the palatine rugae according to length, shape, direction and unification. All analyses were performed by the same calibrated examiner. All tests were performed with an established alpha of 0.05 (P ≤ .05). Odds ratio calculations and chi-square or Fisher exact tests were used in the statistical analysis. A total of 17 (20.7%) patients with tooth agenesis was observed. The predominant shape of rugae was wavy (66.3%). The absence of secondary or fragmentary rugae was associated with tooth agenesis (p = 0.047; Odds ratio=3.00, Confidence Interval 95%=1.03-9.53). In conclusion, patients with tooth agenesis present a different palatine rugae pattern. The absence of secondary or fragmentary rugae was associated with isolated tooth agenesis in the population studied.

References

Al-Muzian, L.; Almuzian, M.; Mohammed, H.; Ulhaq, A.; Keightley, A. J. (2021) Are developmentally missing teeth a predictive risk marker of malignant diseases in non-syndromic individuals? A systematic review. Journal of Orthodontics 18;1465312520984166. Online ahead of print.

Altug-Atac, A. T.; Erdem, D. (2007) Prevalence and distribution of dental anomalies in orthodontic patients. American Journal of Orthodontics and Dentofacial Orthopedics, 131(4): 510–514.

Antunes, L. S.; Küchler, E. C.; Tannure, P. N.; Dias, J. B.; Ribeiro, V. N.; Lips, A.; Costa, M. C. Antunes, L. A.; Granjeiro, J. M. Genetic variations in MMP9 and MMP13 contribute to tooth agenesis in a Brazilian population. J Oral Sci., 2013;55(4):281-6. doi: 10.2334/josnusd.55.281. PMID: 24351915.

Armstrong, J.; Seehra, J.; Andiappan, M.; Jones, A. G, Papageorgiou, S. N., Cobourne, M. T. (2020) Palatine rugae morphology is associated with variation in tooth number. Sci Rep 10(1):19074.

Atay, M.T.; Ozveren, N.; Serindere G. (2020) Evaluation of third molar agenesis associated with hypodontia and oligodontia in turkish pediatric patients. European Oral Research 54(3):136-141.

Carrea, J. U. (1955). Fotostenograms of palate folds, a new identification technic. Deutsche Zahnarztliche Zeitschrift, 10:11–17.

Choi, S. J.; Lee, J. W.; Song, J. H. (2017) Dental anomaly patterns associated with tooth agenesis. Acta Odontol Scand 75(3):161-165.

Cobourne, M. T.; Sharpe, P. T. (2010) Making up the numbers: The molecular control of mammalian dental formula. Semin Cell Dev Biol, 21(3):314-24.

Cuschieri, S. (2019) The STROBE guidelines. Saudi J Anaesth, 13(1): S31-S34.

Endo, T.; Ozoe, R.; Kubota, M.; Akiyama, M.; Shimooka, S. (2006) A survey of hypodontia in Japanese orthodontic patients. American Journal of Orthodontics and Dentofacial Orthopedics, 129(1):29–35.

Fauzi, N. H.; Ardini, Y. D.; Zainuddin, Z.; Lestari, W. (2018) A review on non-syndromic tooth agenesis associated with PAX9 mutations. Japanese Dental Science Review, 54(1): 30–36.

Gritli-Linde, A. (2007) Molecular control of secondary palate development. Dev Biol, 301(2):309-26.

Ibeachu, P. C.; Didia, B. C.; Arigbede, A. O. (2014) A comparative study of palatine rugae patterns among Igbo and Ikwerre ethnic groups of Nigeria: a university of port harcourt study. Anat. Res. Int, 2014:123925.

Kapali, S.; Townsend, G.; Richards, L.; Parish, T. (1997) Palatine rugae in Australian aborigenes and Caucasians. Australian Dental Journal, 42:129–133.

Kantaputra, P.; Sripathomsawat, W. (2011) WNT10A and isolated hypodontia. Am. J. Med. Genet. A 155A:1119–1122.

Khalaf, K.; Miskelly, J.; Voge, E.; Macfarlane, T. V. (2014) Prevalence of hypodontia and associated factors: a systematic review and meta-analysis. Journal of Orthodontics, 41(4):299–316.

Kouskoura, T.; Fragou, N.; Alexiou, M.; John, N.; Sommer, L.; Graf, D.; Katsaros, C.; Mitsiadis, T. A. (2011) The genetic basis of craniofacial and dental abnormalities. Schweiz Monatsschr Zahnmed 121(7-8):636-46.

Küchler, E. C.; Risso, P. A.; Costa, M. C.; Modesto, A.; Vieira, A. R. (2008a) Studies of dental anomalies in a large group of school children. Arch Oral Biol 53(10):941-6.

Küchler, E. C.; De Andrade Risso, P.; De Castro Costa, M.; Modesto, A.; Vieira, A. R. (2008b) Assessing the proposed association between tooth agenesis and taurodontism in 975 paediatric subjects. Int J Paediatr Dent. 18(3):231-4.

Küchler, E. C.; da Motta, L. G.; Vieira, A. R.; Granjeiro, J. M. (2011) Side of dental anomalies and taurodontism as potential clinical markers for cleft subphenotypes. Cleft Palate Craniofac J, 48(1):103-8.

Küchler, E. C.; Lips, A.; Tannure, P. N.; Ho, B.; Costa, M. C.; Granjeiro, J. M.; Vieira A. R. (2013) Tooth agenesis association with self-reported family history of cancer. J Dent Res, 92(2):149-55.

Lin, C.; Fisher, A. V.; Yin, Y.; Maruyama, T.; Veith, G. M.; Dhandha, M.; Huang, G. J.; Hsu, W.; Ma, L. (2011) The inductive role of Wnt-β-Catenin signaling in the formation of oral apparatus. Dev Biol, 356(1):40-50.

Lysell, L. (1955) Plicae palatine transversae and papilla incisive in man: A morphologic and genetic study. Acta Odontologica Scandinavica, 13:5–137.

Mani, S. A.; Mohsin, W. S.; John, J. (2014) Prevalence and patterns of tooth agenesis among Malay children. Southeast Asian J Trop Med Public Health, 45(2):490-8.

Marañón-Vásquez, G. A.; Spada, P. P.; Omori, M. A.; Zielak, J.; Ferreira, J. T. L.; Araújo, M. T. S.; Matsumoto, M. A. N.; Küchler, E. C. (2019) Genetic polymorphism in ESR2 and risk of tooth genesis. Revista Científica do CRO-RJ (Rio de Janeiro Dental Journal), 4(1): 28-33.

Marzouk, T.; Alves, I. L.; Wong, C. L.; DeLucia, L.; McKinney, C. M.; Pendleton, C.; Howe, B. J.; Marazita, M. L.; Peter, T. K.; Kopycka-Kedzierawski, D. T.; Morrison, C. S.; Malmstrom, H.; Wang, H.; Shope, E. T. (2020) Association between Dental Anomalies and Orofacial Clefts: A Meta-analysis. JDR Clin Trans Res. 8:2380084420964795. Epub ahead of print.

Masood, F.; Benavides, E. (2018) Alterations in Tooth Structure and Associated Systemic Conditions. Radiol Clin North Am., 56(1):125-140.

Moran, A.; Tippett, H.; Manoharan, A.; Cobourne, M. T. (2016) Alteration of palatine ruga pattern in subjects with oligodontia: A pilot study. American Journal of Orthodontics and Dentofacial Orthopedics, 150(2): 295-302.

O’Shaughnessy, P. E. (2001) Introduction to forensic science. Dent Clin North Am, 45(2):217-27.

Paliwal, A.; Wanjari, S.; Parwani, R. (2010) Palatine rugoscopy: Establishing identity. Journal of Forensic Dental Sciences 2(1):27-31.

Patil, M. S.; Patil, S. B.; Acharya, A. B. (2008) Palatine Rugae and Their Significance in Clinical Dentistry. The Journal of the American Dental Association, 139(11):1471–1478.

Rakhshan, V.; Rakhshan, H. (2016) Meta-analysis and systematic review of the number of non-syndromic congenitally missing permanent teeth per affected individual and its influencing factors Eur J Orthod, 38(2):170-7.

Silva-Sousa, A. C.; Marañón-Vásquez, G. A.; Gerber, J. T.; Judachesci, C. S.; Stuani, M. B. S.; Nakane Matsumoto, M. A.; Coletta, R. D.; Scariot, R.; Küchler, E. C. (2020) Left-right asymmetry in palatal rugae is associated with genetic variants in WNT signaling pathway. Arch Oral Biol 110:104604.

Surekha, R.; Anila, K.; Reddy, V. S.; Hunasgi, S.; Ravikumar, S.; Ramesh, N. (2012) Assessment of palatal rugae patterns in Manipuri and Kerala population. J Forensic Dent Sci, 4(2):93-6.

Sweat, Y. Y.; Sweat, M.; Yu, W.; Sanz-Navarro, M.; Zhang, L.; Sun, Z.; Eliason, S.; Klein, O. D.; Michon, F.; Chen, Z.; Amendt, B. A. (2020) Sox2 Controls Periderm and Rugae Development to Inhibit Oral Adhesions. J Dent Res 99(12):1397-1405.

Thomas, C. J.; Kotze, T. J. (1983a) The palatine rugae pattern in six southern African human populations, Part I: A description of the populations and a method for its investigation. Journal of The Dental Association South Africa, 38:547–553.

Thomas, C. J.; Kotze, T. J. (1983b) The palatine rugae pattern: A new classification. Journal of The Dental Association South Africa, 38:153–157.

Trakanant, S.; Nihara, J.; Kawasaki, M.; Meguro, F.; Yamada, A.; Kawasaki, K.; Saito, I.; Takeyasu, M.; Ohazama, A. (2020) Molecular mechanisms in palatal rugae development. J Oral Biosci, 62(1):30-35.

von Elm, E.; Altman, D. G.; Egger, M.; Pocock, S. J.; Gøtzsche, P. C.; Vandenbroucke, J. P. (2007) STROBE Initiative. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: guidelines for reporting observational studies. Epidemiology, 18:800–804.

Yu, M.; Wong, S. W.; Han, D.; Cai, T. (2019) Genetic analysis: Wnt and other pathways in nonsyndromic tooth agenesis. Oral diseases 25(3):646–651.

Downloads

Published

22/06/2021

How to Cite

SILVA-SOUSA, A. C.; CARVALHO, C. S.; MARAÑÓN-VÁSQUEZ, G. A. .; MATSUMOTO, M. A. N. .; STUANI, M. B.; OLIVEIRA, M. A. H. de M. .; LEPRI, C. P.; PROFF, P.; PADDENBERG, E.; KIRSCHNECK, C.; KÜCHLER, E. C. . Tooth agenesia might be associated with palatine rugae pattern in a tooth Brazilians population. Research, Society and Development, [S. l.], v. 10, n. 7, p. e29010716487, 2021. DOI: 10.33448/rsd-v10i7.16487. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/16487. Acesso em: 20 apr. 2024.

Issue

Section

Health Sciences