Recovery of liquid effluent H2SiF6 from SSP acidulation: Analysis of the dynamic behavior of the pressure filter by computational

Authors

DOI:

https://doi.org/10.33448/rsd-v10i7.16488

Keywords:

Hexafluorsilicic acid; Pressure filter; Acidulation; SSP; Simulation.; Hexafluorsilicic acid; Pressure filter; Acidulation; SSP; Simulation.

Abstract

Acidification of phosphate rock as one of the mainstages of the production process of phosphate fertilizers. Sulfuric acid is used to obtain phosphoric acid, one of the intermediate products of the fertilizer industry.  This stage of process is already widely used for production of several types of fertilizers, among them Simple Super Phosphate (SSP), generating the liquid effluent hexafluorsilicic acid (H2SiF6) as a by-product from secondary reactions in the process. In this works, we simulate a mathematical model to represent dynamic behavior of filtration and consolidation in pressure filter, equipment used to recover H2SiF6 in production of SSP, in order that it can be used in process itself, helping in the efficiency of acidulation stage of phosphate rock, reducing production costs and promoting a more sustainable process. This study predicts a recovery of 92,07% of H2SiF6 fed and retention of 73,38% of solids. 

References

Almeida, E. G. (2019). Fertilizante de liberação lenta controlada e superfosfato simples no crescimento de mudas de maracujazeiro. Universidade Fereral Rural da Amazônia.

Andritz. (2018). Abrindo Caminhos para o futuro digitalizado - Andritz filtro prensa sidebar e overhead. Disponível em https://www.andritz.com/resource/blob/254416/293235ed1ef8af04d274ff0b7c648e38/se-filter-cloth-data.pdf

Anglo American. (2014). Ficha de Segurança de Produtos Químicos (FISQ).

Boucier, D. (2016). Influence of particle size and shape properties on cake resistance and compressibility during pressure filtration. Chemical Engineering Science, 144, 176–187.

CNA, C. da A. e P. do B., & CEPEA, C. de E. A. em E. A. (2021). PIB do Agronegócio alcança participação de 26,6% no PIB brasileiro em 2020. Disponível em https://www.cnabrasil.org.br/assets/arquivos/boletins/sut.pib_dez_2020.9mar2021.pdf

Costa, L. M. da, & Silva, M. F. de O. (2012). A indústria química e o setor de fertilizantes. In BNDES 60 anos: perspectivas setoriais. (p. 12–60). Banco Nacional de Desenvolvimento Econômico e Social. Disponível em http://web.bndes.gov.br/bib/jspui/handle/1408/2025

Cunha, L. G. S. (2017). Cenários e desafios da indústria de fertilizantes. Universidade de Uberlândia.

Dias, E. G., & Lajolo, R. D. (2010). O meio ambiente na produção de fertilizantes fosfatados no Brasil. In F. R. C. Fernandes, A. B. da Luz, & Z. C. Castilhos (Orgs.), Agrominerais para o Brasil (p. 105–124).

Dias, V. P., & Fernandes, E. (2006). Fertilizantes: uma visão geral sintética. BNDES setorial, 24, 97–138.

Elisario, A. C. D. (2013). Simulação computacional e análise paramétrica de uma unidade industrial de descarga e estocagem de amônia líquida pressurizada. Universidade Federal de Uberlândia.

Foust, A. S., WenzelL, L. A., Clump, C. W., Maus, L., & Andersen, L. B. (1982). Princípio das Operações Unitárias. Editora Guanabara.

Gavira, M. de O. (2003). Simulação como ferramenta computacional de aquisição de conhecimento. UFSCar.

Monteiro, M. F. (2008). Avaliação do ciclo de vida do fertilizante superfosfato simples. Universidade Federal da Bahia.

Pereira, A. S., Shitsuka, D. M., Parreira, F. J., & Shitsuka, R. (2018). Metodologia da pesquisa científica [recurso eletrônico] (1a edição). NTE/UFSM. Disponível em https://repositorio.ufsm.br/bitstream/handle/1/15824/Lic_Computacao_Metodologia-Pesquisa-Cientifica.pdf?sequence=1

Portal do Tratamento de Água. (2017). Filtro Prensa no tratamento de água e efluentes. https://tratamentodeagua.com.br/filtro-prensa-no-tratamento-de-agua-e-efluentes/

Tarleton, E. S. (1998a). A new approach to variable pressure cake filtration. Minerals Engineering, 11, 53–69.

Tarleton, E. S. (1998b). Predicting the performance of pressure filters. Filtration, 35, 293–298.

Tarleton, E. S., & Wakeman, R. J. (1994a). A framework methodology for the simulation and sizing of diaphragm filter presses. Minerals Engineering, 7, 1411–1425.

Tarleton, E. S., & Wakeman, R. J. (1994b). The simulation, modelling and sizing of pressure filters. Filtration and Separation, 31(4), 393–397.

Tarleton, E. S., & Wakeman, R. J. (2005a). Filter Design Software (FDS) for Filter Process Simulation. Improving process efficiency through filter scale-up and evaluation.

Tarleton, E. S., & Wakeman, R. J. (2005b). Computer software for the specification of solid/liquidseparation equipment. Filtech Conference, 14–21.

Wakeman, R. J., & Tarleton, E. S. (1994). A framework methodology for the simulation and sizing of diaphragm filter presses. Minerals Engineering, 7(11), 1411–1425.

Watson-Marlow Bredel. (2017). Bredel 65, Bredel 80 e Bredel 100. Disponível em https://www.wmftg.com/v1.0/Documents/knowledge-hub/Datasheets/br-pt - portuguese/Bredel PT/wd-bredel_65_80_100-pt-06.pdf

Published

22/06/2021

How to Cite

COSTA, C. M.; PEREIRA, G. S.; RAMOS, P. C.; CARDOSO, A. de O. Recovery of liquid effluent H2SiF6 from SSP acidulation: Analysis of the dynamic behavior of the pressure filter by computational . Research, Society and Development, [S. l.], v. 10, n. 7, p. e28710716488, 2021. DOI: 10.33448/rsd-v10i7.16488. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/16488. Acesso em: 15 nov. 2024.

Issue

Section

Engineerings