Waste açaí (Euterpe precatoria Mart.) seeds as a new alternative source of cellulose: Extraction and characterization





Agro-industrial waste; Açaí seed; Cellulose.


Açaí (Euterpe precatoria Mart.) is a plant widely cultivated in the northern region of Brazil. Its fruits have been gaining worldwide prominence due to their countless benefits for human health. Consequently, pulp production has increased considerably in recent years, generating significant amounts of waste (mainly seeds). As these residues do not have proper disposal, they are either discarded in the environment or incinerated, causing numerous environmental impacts. To present alternative applications of these residues, this study aimed to evaluate the lignocellulosic contents of açaí seeds – extracts, ash, lignin, cellulose (α-cellulose and hemicellulose) – in addition to extracting and characterizing the cellulose obtained from this abundant residue. The seeds and the extracted cellulose were characterized by several techniques: X-ray fluorescence (XRF), X-ray diffraction (XRD), Attenuated total reflectance with Fourier transform infrared spectroscopy (ATR/FTIR), and thermogravimetry (TGA). In this study, the high potential of using açaí seeds as an alternative source of cellulose was confirmed, since presents 45.5% of this polymer and all the characterization techniques show the purity of the extracted cellulose (type I).


Abu-Thabit, N. Y., Judeh, A. A., Hakeem, A. S., Ul-Hamid, A., Umar, Y., & Ahmad, A. (2020). Isolation and characterization of microcrystalline cellulose from date seeds (Phoenix dactylifera L.). International Journal of Biological Macromolecules. https://doi.org/10.1016/j.ijbiomac.2020.03.255

Akhlisah, Z. N., Yunus, R., Abidin, Z. Z., Lim, B. Y., & Kania, D. (2021, January). Pretreatment methods for an effective conversion of oil palm biomass into sugars and high-value chemicals. Biomass and Bioenergy, 144, 105901. https://doi.org/10.1016/j.biombioe.2020.105901

Alain, D. (2013). Nanocellulose: A new ageless bionanomaterial. Materials Today.

Araujo, R. O., Santos, V. O., Ribeiro, F. C. P., Chaar, J. da S., Pereira, A. M., Falcão, N. P. S., & de Souza, L. K. C. (2021). Magnetic acid catalyst produced from acai seeds and red mud for biofuel production. Energy Conversion and Management, 228(December 2020), 113636. https://doi.org/10.1016/j.enconman.2020.113636

Batista, B. N., Rapôso, N. V. M., & Liberato, M. A. R. (2017). Determinação do protocolo de assepsia para reprodução in vitro de Euterpe precatoria MART. Revista Fitos. https://doi.org/10.5935/2446-4775.20170005

Bessa, W., Trache, D., Derradji, M., Bentoumia, B., Tarchoun, A. F., & Hemmouche, L. (2021). Effect of silane modified microcrystalline cellulose on the curing kinetics, thermo-mechanical properties and thermal degradation of benzoxazine resin. International Journal of Biological Macromolecules. https://doi.org/10.1016/j.ijbiomac.2021.03.080

Bhatia, S. K., Gurav, R., Choi, T. R., Han, Y. H., Park, Y. L., Park, J. Y., & Yang, Y. H. (2019). Bioconversion of barley straw lignin into biodiesel using Rhodococcus sp. YHY01. Bioresource Technology. https://doi.org/10.1016/j.biortech.2019.121704

Boeira, L. S., Bastos Freitas, P. H., Uchôa, N. R., Bezerra, J. A., Cád, S. V., Junior, S. D., & Maciel, L. R. (2020). Chemical and sensorial characterization of a novel alcoholic beverage produced with native acai (Euterpe precatoria) from different regions of the Amazonas state. LWT. https://doi.org/10.1016/j.lwt.2019.108632

Buratto, R. T., Cocero, M. J., & Martín, Á. (2021). Characterization of industrial açaí pulp residues and valorization by microwave-assisted extraction. Chemical Engineering and Processing - Process Intensification. https://doi.org/10.1016/j.cep.2020.108269

Cheng, S., Huang, A., Wang, S., & Zhang, Q. (2016). Effect of different heat treatment temperatures on the chemical composition and structure of chinese fir wood. BioResources. https://doi.org/10.15376/biores.11.2.4006-4016

Corrêa, A C, Teixeira, E. M., Marconcini, J. M., Pessan, L. A., & Mattoso, L. H. C. (2009). Nanofibras de Celulose a Partir de Fibras de Curauá. 10 ° Congresso Brasileiro de Polímeros.

Corrêa, Ana Carolina, de Teixeira, E. M., Pessan, L. A., & Mattoso, L. H. C. (2010). Cellulose nanofibers from curaua fibers. Cellulose. https://doi.org/10.1007/s10570-010-9453-3

Da Cruz Demosthenes, L. C., Nascimento, L. F. C., Monteiro, S. N., Costa, U. O., Da Costa Garcia Filho, F., Luz, F. S. Da, & Braga, F. O. (2020). Thermal and structural characterization of buriti fibers and their relevance in fabric reinforced composites. Journal of Materials Research and Technology. https://doi.org/10.1016/j.jmrt.2019.10.036

da Silva, V. de A. A., Vieira, W. T., Bispo, M. D., de Melo, S. F., da Silva, T. L., Balliano, T. L., & Soletti, J. I. (2021). Caffeine removal using activated biochar from açaí seed (Euterpe oleracea Mart): Experimental study and description of adsorbate properties using Density Functional Theory (DFT). Journal of Environmental Chemical Engineering, 9(1), 104891. https://doi.org/10.1016/j.jece.2020.104891

de Azevedo, A. R. G., Marvila, M. T., Tayeh, B. A., Cecchin, D., Pereira, A. C., & Monteiro, S. N. (2021). Technological performance of açaí natural fibre reinforced cement-based mortars. Journal of Building Engineering. https://doi.org/10.1016/j.jobe.2020.101675

de S. Barros, S., Pessoa Junior, W. A. G., Sá, I. S. C., Takeno, M. L., Nobre, F. X., Pinheiro, W., & de Freitas, F. A. (2020). Pineapple (Ananás comosus) leaves ash as a solid base catalyst for biodiesel synthesis. Bioresource Technology. https://doi.org/10.1016/j.biortech.2020.123569

de Souza, L. K. C., Gonçalves, A. A. S., Queiroz, L. S., Chaar, J. S., da Rocha Filho, G. N., & da Costa, C. E. F. (2020). Utilization of acai stone biomass for the sustainable production of nanoporous carbon for CO2 capture. Sustainable Materials and Technologies, 25, e00168. https://doi.org/10.1016/j.susmat.2020.e00168

do Nascimento, B. F., de Araujo, C. M. B., do Nascimento, A. C., da Silva, F. L. H., de Melo, D. J. N., Jaguaribe, E. F., & da Motta Sobrinho, M. A. (2020). Detoxification of sisal bagasse hydrolysate using activated carbon produced from the gasification of açaí waste. Journal of Hazardous Materials, (October), 124494. https://doi.org/10.1016/j.jhazmat.2020.124494

Fethiza Tedjani, C., Ben Mya, O., & Rebiai, A. (2020). Isolation and characterization of cellulose from date palm tree spathe sheath. Sustainable Chemistry and Pharmacy. https://doi.org/10.1016/j.scp.2020.100307

Freitas, F. A., Licursi, D., Lachter, E. R., Galletti, A. M. R., Antonetti, C., Brito, T. C., & Nascimento, R. S. V. (2016). Heterogeneous catalysis for the ketalisation of ethyl levulinate with 1,2-dodecanediol: Opening the way to a new class of bio-degradable surfactants. Catalysis Communications, 73, 84–87. https://doi.org/10.1016/j.catcom.2015.10.011

Gabriel, T., Belete, A., Syrowatka, F., Neubert, R. H. H., & Gebre-Mariam, T. (2020a). Extraction and characterization of celluloses from various plant byproducts. International Journal of Biological Macromolecules, 158, 1248–1258. https://doi.org/10.1016/j.ijbiomac.2020.04.264

Gabriel, T., Belete, A., Syrowatka, F., Neubert, R. H. H., & Gebre-Mariam, T. (2020b). Extraction and characterization of celluloses from various plant byproducts. International Journal of Biological Macromolecules. https://doi.org/10.1016/j.ijbiomac.2020.04.264

Galiwango, E., Abdel Rahman, N. S., Al-Marzouqi, A. H., Abu-Omar, M. M., & Khaleel, A. A. (2019). Isolation and characterization of cellulose and α-cellulose from date palm biomass waste. Heliyon. https://doi.org/10.1016/j.heliyon.2019.e02937

Ganapathy, T., Sathiskumar, R., Senthamaraikannan, P., Saravanakumar, S. S., & Khan, A. (2019). Characterization of raw and alkali treated new natural cellulosic fibres extracted from the aerial roots of banyan tree. International Journal of Biological Macromolecules. https://doi.org/10.1016/j.ijbiomac.2019.07.136

Han, Y., Yu, M., & Wang, L. (2018). Soy protein isolate nanocomposites reinforced with nanocellulose isolated from licorice residue: Water sensitivity and mechanical strength. Industrial Crops and Products. https://doi.org/10.1016/j.indcrop.2018.02.028

Itai, Y., Santos, R., Branquinho, M., Malico, I., Ghesti, G. F., & Brasil, A. M. (2014). Numerical and experimental assessment of a downdraft gasifier for electric power in Amazon using açaí seed (Euterpe oleracea Mart.) as a fuel. Renewable Energy, 66, 662–669. https://doi.org/10.1016/j.renene.2014.01.007

Javed, U., Ansari, A., Aman, A., & Ul Qader, S. A. (2019). Fermentation and saccharification of agro-industrial wastes: A cost-effective approach for dual use of plant biomass wastes for xylose production. Biocatalysis and Agricultural Biotechnology, 21, 101341. https://doi.org/10.1016/j.bcab.2019.101341

Julie Chandra, C. S., George, N., & Narayanankutty, S. K. (2016). Isolation and characterization of cellulose nanofibrils from arecanut husk fibre. Carbohydrate Polymers. https://doi.org/10.1016/j.carbpol.2016.01.015

Kasiri, N., & Fathi, M. (2018). Production of cellulose nanocrystals from pistachio shells and their application for stabilizing Pickering emulsions. International Journal of Biological Macromolecules. https://doi.org/10.1016/j.ijbiomac.2017.08.112

Kassab, Z., Abdellaoui, Y., Salim, M. H., & El Achaby, M. (2020). Cellulosic materials from pea (Pisum Sativum) and broad beans (Vicia Faba) pods agro-industrial residues. Materials Letters. https://doi.org/10.1016/j.matlet.2020.128539

Kassab, Z., El Achaby, M., Tamraoui, Y., Sehaqui, H., Bouhfid, R., & Qaiss, A. E. K. (2019). Sunflower oil cake-derived cellulose nanocrystals: Extraction, physico-chemical characteristics and potential application. International Journal of Biological Macromolecules. https://doi.org/10.1016/j.ijbiomac.2019.06.049

Kumode, M. M. N., Bolzon, G. I. M., Magalhães, W. L. E., & Kestur, S. G. (2017). Microfibrillated nanocellulose from balsa tree as potential reinforcement in the preparation of ‘green’ composites with castor seed cake. Journal of Cleaner Production. https://doi.org/10.1016/j.jclepro.2017.02.083

Lopes, E., Soares-Filho, B., Souza, F., Rajão, R., Merry, F., & Carvalho Ribeiro, S. (2019). Mapping the socio-ecology of Non Timber Forest Products (NTFP) extraction in the Brazilian Amazon: The case of açaí (Euterpe precatoria Mart) in Acre. Landscape and Urban Planning, 188. https://doi.org/10.1016/j.landurbplan.2018.08.025

Maache, M., Bezazi, A., Amroune, S., Scarpa, F., & Dufresne, A. (2017). Characterization of a novel natural cellulosic fiber from Juncus effusus L. Carbohydrate Polymers. https://doi.org/10.1016/j.carbpol.2017.04.096

Malik, K., Salama, E. S., El-Dalatony, M. M., Jalalah, M., Harraz, F. A., Al-Assiri, M. S., … Li, X. (2021). Co-fermentation of immobilized yeasts boosted bioethanol production from pretreated cotton stalk lignocellulosic biomass: Long-term investigation. Industrial Crops and Products, 159, 113122. https://doi.org/10.1016/j.indcrop.2020.113122

Melo, P. S., Massarioli, A. P., Lazarini, J. G., Soares, J. C., Franchin, M., Rosalen, P. L., & Alencar, S. M. de. (2020). Simulated gastrointestinal digestion of Brazilian açaí seeds affects the content of flavan-3-ol derivatives, and their antioxidant and anti-inflammatory activities. Heliyon, 6(10), e05214. https://doi.org/10.1016/j.heliyon.2020.e05214

Melo, P. S., Selani, M. M., Gonçalves, R. H., Paulino, J. de O., Massarioli, A. P., & Alencar, S. M. de. (2021). Açaí seeds: An unexplored agro-industrial residue as a potential source of lipids, fibers, and antioxidant phenolic compounds. Industrial Crops and Products. https://doi.org/10.1016/j.indcrop.2020.113204

Melro, E., Filipe, A., Valente, A. J. M., Antunes, F. E., Romano, A., Norgren, M., & Medronho, B. (2020). Levulinic acid: A novel sustainable solvent for lignin dissolution. International Journal of Biological Macromolecules, 164, 3454–3461. https://doi.org/10.1016/j.ijbiomac.2020.08.128

Mendonça, Iasmin M., Paes, O. A. R. L., Maia, P. J. S., Souza, M. P., Almeida, R. A., Silva, C. C., & de Freitas, F. A. (2019). New heterogeneous catalyst for biodiesel production from waste tucumã peels (Astrocaryum aculeatum Meyer): Parameters optimization study. Renewable Energy. https://doi.org/10.1016/j.renene.2018.06.059

Mendonça, Iasmin Maquiné, Machado, F. L., Silva, C. C., Duvoisin Junior, S., Takeno, M. L., de Sousa Maia, P. J., & de Freitas, F. A. (2019). Application of calcined waste cupuaçu (Theobroma grandiflorum) seeds as a low-cost solid catalyst in soybean oil ethanolysis: Statistical optimization. Energy Conversion and Management. https://doi.org/10.1016/j.enconman.2019.112095

Mondal, S. (2017). Preparation, properties and applications of nanocellulosic materials. Carbohydrate Polymers. https://doi.org/10.1016/j.carbpol.2016.12.050

Moshi, A. A. M., Ravindran, D., Bharathi, S. R. S., Indran, S., Saravanakumar, S. S., & Liu, Y. (2020). Characterization of a new cellulosic natural fiber extracted from the root of Ficus religiosa tree. International Journal of Biological Macromolecules, 142, 212–221. https://doi.org/10.1016/j.ijbiomac.2019.09.094

Naduparambath, S., T.V., J., Shaniba, V., M.P., S., Balan, A. K., & Purushothaman, E. (2018). Isolation and characterisation of cellulose nanocrystals from sago seed shells. Carbohydrate Polymers. https://doi.org/10.1016/j.carbpol.2017.09.088

Nagata, G. A., Souto, B. A., Perazzini, M. T. B., & Perazzini, H. (2020). Analysis of the isothermal condition in drying of acai berry residues for biomass application. Biomass and Bioenergy, 133(December 2019), 105453. https://doi.org/10.1016/j.biombioe.2019.105453

Nishiyama, Y., Langan, P., & Chanzy, H. (2002). Crystal structure and hydrogen-bonding system in cellulose Iβ from synchrotron X-ray and neutron fiber diffraction. Journal of the American Chemical Society. https://doi.org/10.1021/ja0257319

Oliveira, A. C. de, Aguilar-Galvez, A., Campos, D., & Rogez, H. (2019). Absorption of polycyclic aromatic hydrocarbons onto depolymerized lignocellulosic wastes by Streptomyces viridosporus T7A. Biotechnology Research and Innovation, 3(1), 131–143. https://doi.org/10.1016/j.biori.2019.04.002

Pereira, B., & Arantes, V. (2020). Production of cellulose nanocrystals integrated into a biochemical sugar platform process via enzymatic hydrolysis at high solid loading. Industrial Crops and Products, 152, 112377. https://doi.org/10.1016/j.indcrop.2020.112377

Queiroz, L. S., de Souza, L. K. C., Thomaz, K. T. C., Leite Lima, E. T., da Rocha Filho, G. N., do Nascimento, L. A. S., & da Costa, C. E. F. (2020). Activated carbon obtained from amazonian biomass tailings (acai seed): Modification, characterization, and use for removal of metal ions from water. Journal of Environmental Management, 270(January), 110868. https://doi.org/10.1016/j.jenvman.2020.110868

Rossetto, R., Maciel, G. M., Bortolini, D. G., Ribeiro, V. R., & Haminiuk, C. W. I. (2020). Acai pulp and seeds as emerging sources of phenolic compounds for enrichment of residual yeasts (Saccharomyces cerevisiae) through biosorption process. LWT, 128(October 2019), 109447. https://doi.org/10.1016/j.lwt.2020.109447

Salama, A. (2020). Cellulose/silk fibroin assisted calcium phosphate growth: Novel biocomposite for dye adsorption. International Journal of Biological Macromolecules. https://doi.org/10.1016/j.ijbiomac.2020.10.074

Santos, R. M. dos, Flauzino Neto, W. P., Silvério, H. A., Martins, D. F., Dantas, N. O., & Pasquini, D. (2013). Cellulose nanocrystals from pineapple leaf, a new approach for the reuse of this agro-waste. Industrial Crops and Products. https://doi.org/10.1016/j.indcrop.2013.08.049

Santos, N. S., Silva, M. R., & Alves, J. L. (2017). Reinforcement of a biopolymer matrix by lignocellulosic agro-waste. Procedia Engineering, 200, 422–427. https://doi.org/10.1016/j.proeng.2017.07.059

Santos, V. O., Queiroz, L. S., Araujo, R. O., Ribeiro, F. C. P., Guimarães, M. N., da Costa, C. E. F., & de Souza, L. K. C. (2020). Pyrolysis of acai seed biomass: Kinetics and thermodynamic parameters using thermogravimetric analysis. Bioresource Technology Reports. https://doi.org/10.1016/j.biteb.2020.100553

Sato, M. K., de Lima, H. V., Costa, A. N., Rodrigues, S., Pedroso, A. J. S., & de Freitas Maia, C. M. B. (2019). Biochar from Acai agroindustry waste: Study of pyrolysis conditions. Waste Management, 96, 158–167. https://doi.org/10.1016/j.wasman.2019.07.022

Segal, L., Creely, J. J., Martin, A. E., & Conrad, C. M. (1959). An Empirical Method for Estimating the Degree of Crystallinity of Native Cellulose Using the X-Ray Diffractometer. Textile Research Journal. https://doi.org/10.1177/004051755902901003

Silva, D. de J., & D’Almeida, M. L. O. (2009). Nanocristais de celulose (Cellulose whiskers). O Papel (Brazil).

Tamilselvi, A., Jayakumar, G. C., Sri Charan, K., Sahu, B., Deepa, P. R., Kanth, S. V., & Kanagaraj, J. (2019). Extraction of cellulose from renewable resources and its application in leather finishing. Journal of Cleaner Production. https://doi.org/10.1016/j.jclepro.2019.04.401

Tappi. (2007). Solvent extractives of wood and pulp ( Proposed revision of T 204 cm-97 ). Tappi.

TAPPI. (1999). Alpha- , beta- and gamma-cellulose in pulp. Test Methods T 203 Cm-99. Atlanta: Technical Association of the Pulp and PaperI Ndustry.

Tarchoun, A. F., Trache, D., & Klapötke, T. M. (2019). Microcrystalline cellulose from Posidonia oceanica brown algae: Extraction and characterization. International Journal of Biological Macromolecules. https://doi.org/10.1016/j.ijbiomac.2019.07.176

Technical Association of Pulp and Paper Industry. T204 cm-97. Solvent extractives of wood and pulp. , TAPPI test methods § (1997).

Technical Association of the Pulp and Paper Industry. (2011). TAPPI T 222: Acid-insoluble lignin in wood and pulp. In TAPPI test methods. https://doi.org/10.1023/a:1019003230537

Tonoli, G. H. D., Teixeira, E. M., Corrêa, A. C., Marconcini, J. M., Caixeta, L. A., Pereira-Da-Silva, M. A., & Mattoso, L. H. C. (2012). Cellulose micro/nanofibres from Eucalyptus kraft pulp: Preparation and properties. Carbohydrate Polymers. https://doi.org/10.1016/j.carbpol.2012.02.052

Turner, S., & Kumar, M. (2018). Cellulose synthase complex organization and cellulose microfibril structure. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences. https://doi.org/10.1098/rsta.2017.0048

Ventura-Cruz, S., Flores-Alamo, N., & Tecante, A. (2020). Preparation of microcrystalline cellulose from residual Rose stems (Rosa spp.) by successive delignification with alkaline hydrogen peroxide. International Journal of Biological Macromolecules. https://doi.org/10.1016/j.ijbiomac.2020.03.222

Wu, C., McClements, D. J., He, M., Zheng, L., Tian, T., Teng, F., & Li, Y. (2021). Preparation and characterization of okara nanocellulose fabricated using sonication or high-pressure homogenization treatments. Carbohydrate Polymers. https://doi.org/10.1016/j.carbpol.2020.117364

Xu, J., Zheng, H., Liu, H., Zhou, C., Zhao, Y., Li, Y., & Li, Y. (2010). Crystal hierarchical supramolecular architectures from 1-D precursor single-crystal seeds. Journal of Physical Chemistry C. https://doi.org/10.1021/jp911595m

Xu, W., Reddy, N., & Yang, Y. (2009). Extraction, characterization and potential applications of cellulose in corn kernels and Distillers’ dried grains with solubles (DDGS). Carbohydrate Polymers. https://doi.org/10.1016/j.carbpol.2008.11.017

Zhang, K., Xu, R., Abomohra, A. E. F., Xie, S., Yu, Z., Guo, Q., & Li, X. (2019). A sustainable approach for efficient conversion of lignin into biodiesel accompanied by biological pretreatment of corn straw. Energy Conversion and Management, 199, 111928. https://doi.org/10.1016/j.enconman.2019.111928

Zoubiri, F. Z., Rihani, R., & Bentahar, F. (2020). Golden section algorithm to optimise the chemical pretreatment of agro-industrial waste for sugars extraction. Fuel, 266, 117028. https://doi.org/10.1016/j.fuel.2020.117028



How to Cite

BARROS, S. de S. .; OLIVEIRA, E. da S. .; PESSOA JR, W. A. G. .; ROSAS, A. L. G. .; FREITAS, A. E. M. de .; LIRA, M. S. de F. .; CALDERARO, F. L.; SARON, C. .; FREITAS, F. A. de . Waste açaí (Euterpe precatoria Mart.) seeds as a new alternative source of cellulose: Extraction and characterization. Research, Society and Development, [S. l.], v. 10, n. 7, p. e31110716661, 2021. DOI: 10.33448/rsd-v10i7.16661. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/16661. Acesso em: 24 apr. 2024.



Exact and Earth Sciences