Review: Growth of C3 and C4 plants in response to different CO2 concentrations
DOI:
https://doi.org/10.33448/rsd-v10i7.16701Keywords:
Photosynthesis; Atmospheric CO2 increase; C3 and C4 weed management.Abstract
C3 plants tend to present more evident responses in their growth when there is an increase in CO2 in the environment. Such observations are not so evident in plants with C4 metabolism, which are considered more naturally evolved due to their functional anatomy, which is capable of concentrating a greater amount of CO2 in their cells, making photosynthesis a more efficient process. Several studies are found that suggest greater growth of plants that use both C3 and C4 metabolism when subjected to higher CO2 concentrations than current environmental conditions. The objective of the present work was to carry out a review of the influence of atmospheric CO2 concentration on the growth of cultivated plants with emphasis on the cultivation of beans and corn and weeds. The increase in carbon dioxide benefits the growth of both C3 metabolism and C4 metabolism plants. Knowing that the future trend is that the concentration of carbon dioxide is increased in the atmosphere, due to emissions mainly from fossil fuels, it will become appropriate to invest in more inputs and technologies to reduce competition with weeds, as their growth also it will be favored and may interfere with competition for nutrients, and thus reduce crop productivity.
References
Ainsworth, E. A. & Rogers, A. (2007). The response of photosynthesis and stomatal conductance to rising [CO2]: mechanisms and environmental interactions. Plant Cell Environ, 30, 258–270.
Ainsworth, E. A. & Long, S. P. (2005). What have we learned from 15 years of free-air CO2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2. New Phytol, 165, 351–371.
Ainsworth, E. A., Leakey, A. D. B., Ort, D. R. & Long, S. P. (2008). FACE-ing the facts: inconsistencies and interdependence among field, chamber and modeling studies of elevated [CO2] impacts on crop yield and food supply. New Phytol,179, 5–9.
Ainsworth, E. A., & Ort, D.R. (2010). How do we improve crop production in a warming world? Plant Physiol, 154(2), 526-530.
Ambrizzi, T. & Araújo, M. (2020). Base científica das Mudanças Climáticas - PBMC. Painel Brasileiro de Mudanças Climáticas. http://www.pbmc.coppe.ufrj.br/documentos/RAN1_completo_vol1.pdf
Bao, J., Lu, W. H., Zhao, J. & Bi, T. X. (20180. Greenhouses for CO2 sequestration from atmosphere. Science Direct, 1, 183-190.
Bastos, A., Ciais, P., Chevallier, F., Rodenbeck, C., Ballantaine A. P., Maignan, F., Yin, Y., Martinez, M. F., Friedlingstein, L., Penuelas, J., Piao, S. L., Smith, W. K., Wang, X., Zhu, Z., Haverd, V., Kato, E., Jain, A., Lienert, S., Lombardozzi, D., Nabel, J. E. M. S., Peylin, P., Poulter, B. & Zhu, D. (2019). Contrasting effects of CO2 fertilization, land-use change and warming on seasonal amplitude of Northern Hemisphere CO2 exchange. Atmos. Chem. Phys., 19, 12361–12375.
Bergamaschi, H. & Matzenauer, R. (2014). O milho e o clima. Emater/RS Ascar.
Bernacchi, C. J., Leakey, A. B. D., Heady L. E., Morgan, P. B., Dohleman, F. G., McGrath, J. M., Gillespie, K. M., Wittih, V. E., Rogers, A.,Long, S. P. &Ort, D. R. (2006). Hourly and seasonal variation in photosynthesis and stomatal conductance of soybean grown at future CO2 and ozone concentrations for 3 years under fully open‐air field conditions. Plant, Cell & Environment, 29(11), 2077-2090.
Bernacchi, C. J., Kimball, B. A., Quarles, D. R., Long S. P. & Ort, D. R. (2007). Decreases in stomatal conductance of soybean under open-air elevation of [CO2] are closely coupled with decreases in ecosystem evapotranspiration. Plant Physiology, 143(1), 134-144.
Busch, F. & Sage, A. R. (2017). The sensitivity of photosynthesis to O2 and CO2 concentration identifies strong Rubisco control above the thermal optimum. New Phytologist, 213(3), 1036-1051.
Castro, F. S., Xavier, A. C., Pimenta, L. R., Elesbon, A. & Alexandre, A.(2020) Brazilian Journal. of Development., 6(5), 28410-28427.
Carvalho, S. J. P. & Christoffoleti, P. J. (2007). Influência da luz e da temperatura na germinação de cinco espécies de plantas daninhas do gênero Amaranthus. Bragantia, 66(4), 527-533.
CONAB – Companhia Nacional De Abastecimento. (2020). https://www.conab.gov.br/ultimas-noticias/3549-producao-de-graos-sinaliza-recorde-final-de-253-7-milhoes-de-toneladas.
Daud, M., Bustam, B. M. & Arfin, B. A. (2019). Comparative study of carbon dioxide absoption capacity of seven urban Forest plant species of Banda Aceh, Indonesia. Biodiversitas Journal of Biological Diversity, 20(11).
Donohue, R. J., Roderick M. L., Mcvicar, T. R. & Farquar, G. D. (2013). Impact of CO2 fertilization on maximum foliage cover across the globe’s warm, arid environments. Geophysical Research Letters, 40, 3031–3035.
Dorneles, K. R., Posso, D. A., Rebhahn, I., Deuner, S., Pazdiora, P. C., Avila, L. A. & Dallagnol, L. J. (2019). Respostas morfofisiológicas e rendimento de grãos do trigo mediados pelo aumento da concentração de CO2 atmosférico. Revista Brasileira de Ciências Agrárias, 14(1), 1981-0997.
Galmés, J., Carmen, H. C., Lauri, L. & Ülo N. (2016). A compendium of temperature responses of Rubisco kinetic traits: variability among and within photosynthetic groups and impacts on photosynthesis modeling. Journal of Experimental Botany, 67(17), 5067–5091.
Galmés J., Capo´-Bauc, S., Ülo, N., & Iguez, C. (2019). Potential improvement in crop photosynthesis by exploiting Rubisco variability. Current Opinion in Plant Biology, 49, 60–67.
Gandin, A., Koteyeva, N. K., Voznesenskaya, E. V., Edwards, G. E. & Cousins, A. B. (2014). Temperature response of C3–C4 intermediates. Plant Cell Environ, 37, 2601-2612.
Gil, A. C. (2017). Pós-Graduação-Metodologia-Como Elaborar Projetos de Pesquisa - Cap 2.
House, K. Z., Baclig, A. C., Ranjan, M., Van, E. A. N., Wilcox, J. & Herzog, H. J. Economic and energetic analysis of capturing CO2 from ambienta ir. PNAS, 108, 20428-20433.
Hong, C. Y., Lee, Y. C., Tsai, M. C., & Tsai, Y. C. (2018). Agricultural Sector Input Technical Coefficients, Demand Changes and CO2 Emissions after the Financial Crisis: Environmental Input-Output Growth Factor Model Approach. International Journal of Energy Economics and Policy, 8(6), 339-345.
IPCC - The Intergovernmental Panel on Climate Change. (2020) https://www.ipcc.ch/srccl/chapter/chapter-1/
Leakey, A.D. (2009). Rising atmospheric carbon dioxide concentration and the future of C4 crops for food and fuel. Proceedings of The Royal Society B, 276(1666) 2333-2343.
Long S. P., Ainsworth, E. A., Leakey, A. D. B., Nösberger, J. & Ort, D.R. (2006). Food for thought: lower-than-expected crop yield stimulation with rising CO2 concentrations. Science, 312, 1918–1921.
Long S. P., Marshall-Colon, A. & Zhu, X.G. (2015). Meeting the global demando f the future by engineering crop photosynthesis and yield potential. Cell, 16, 56-66.
Mackinder, L. C. M. (2018). The Chlamydomonas CO2: concentrating mechanism and its potential for engineering photosynthesis in plants. New Phytologist, 217(1), .54-61.
Magalhães, P. C., Durães, F. O. M.,Carneiro, N. P. & Paiva, E. (2002) Fisiologia do milho. Sete Lagoas: EMBRAPA-CNPMS. 23 p. (Circular Técnica, n. 22).
Melo, L. C. Del Peloso, M. J., Pereira, H. S., Faria, L. C., Costa, J. G. C., Díaz, J. L. C., Rava, C. A., Wendland, A. & Abreu, A. F. B. (2010). BRS Estilo: common bean cultivar with Carioca grain, upright growth and high yield potential. Crop Breed. Appl. Biotechnol. (Online), Viçosa , 10(4), 377-379 http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1984-70332010000400015&lng=en&nrm=iso
Mondo, V. H. V., Carvalho, S. J. P., Diaz, A. C. R, .& Marcos Filho, J. (2010). Efeitos da luz e temperatura na germinação de sementes de quatro espécies de plantas daninhas do gênero Digitaria. Rev. Bras. Sementes, Londrina, 32(1), 131-137.
NOAA. 2017. National Climatic Data Center, State of the Climate. https://www.esrl.noaa.gov/gmd/ccgg/
Oliveira, V. F., Silva, E. A., Zaidan, L. B. P. & Carvalho, M. A. M. (2013). Effects of elevated CO2 concentration and water deficit on fructan metabolism in Viguiera discolor Baker. Plant Biology, 15, 471-482.
Patterson, D. T. Weeds in a changing climate, Weed Science, 43, 685–700.
Renato, N. S., Sediyama, G. C., Silva, J. B. L. & Pereira, E. G. (2018). Modelo fotossintético para simulação da produtividade do milho em condições de temperatura e CO2 elevados. Rev. de Ciências Agrárias, 41(4), 211-220.
Rogers, A., Allen, D. J., Davey, P. A., Morgan, E. A., Ainsworth, E. A., Bernacchi, C. J., Cornoc, G., Dermody, O., Dohleman, F. G., Heaton, E. A., Mahoney, J., Zhu, X. G., Delucia, E. H., Ort, D. R. & Long, S. P. (2004). Leaf photosynthesis and carbohydrate dynamics of soybeans grown throughout their lifecycle under Free air Carbon Dioxide Enrichment. Plant, Cell & Environment, 27, 449–458.
Ruiz-Vera, U. M., Siebers, M., Gray, S. B., Drag, D. W., Rosenthal, D. M., Kimball, D. A., Ort, D. R. & Bernacchi, C. J. (2013). Global warming can negate the expected CO2 stimulation in photosynthesis and productivity for soybean grown in the Midwestern United States. Plant Physiology, 162(1), 410-423.
Sanches, R. F. E., Catarino, I. C. A., Braga, M. R & Silva, E. A. (2017). Influência da alta concentração atmosférica de CO2(↑[CO2]atm) × disponibilidade hídrica nas relações hídricas, trocas gasosas e acúmulo de carboidratos em Coffea arabica L. Hoehnea, 44(4), 635-643.
Santos, D, Haerbaert, F. M., Lucio, A. D., Lindolfo, S. & Cargnelutti Filho, A. (2012). Tamanho ótimo de parcela para a cultura do feijão-vagem. Rev. Ciênc. Agron, 43(1) 119-128.
Snak, C., Miotto, S. T. S. & Goldenberg, R. (2011). Phaseolinae (Leguminosae, Papilionoideae, Phaseoleae) no estado do Paraná, Brasil. Rodriguésia. 62, 695-716.
Souza, T. L. P. O. de, Melo, L. C., Pereira, H. S., Faria, L. C. de, Aguiar, M. S. de, Cabrera Diaz, J. L., carvalho, H. W. L. de, Melo, C. L. P. de, Costa, A. F. da, Magaldi, M. C. de S., Costa, J. G. C. da, Wendland, A., Abreu, A. de F. B., Pereira Filho, I. A., Posse, S. C. P., Martins, M., Albrecht, J. C., Souza Filho, B. F. de, Almeida, V. M. de, Guimarães, C. M., Braz, A. J. B. P., Marangon, M. A., Trindade, N. L. S. R., Souza, N. P. de, faria, J. C. de & Del Peloso, M. J. (2019). BRS FP403: cultivar de feijão preto com alta produtividade e qualidade de grãos, moderada resistência à murcha de Fusarium e podridões radiculares. Comunicado Técnico 247.
Souza, M. T., Silva, M. D., & Carvalho, R. (2010). Revisão integrativa: o que é e como fazer. Einstein, 8(1), 102-106.
Van der Sleen, P., Groenendijk, P., Vlam, M., Anten, N. P. R., Boom, A., Bongers, F., Pons, T. L., Terburg, G. & Zuidema, P. A. No growth stimulation of tropical trees by 150 years of CO2 fertilization but water-use efficiency increased. Nature Geoscience, 8, 24-28.
Von Caemmerer S. (2000). Biochemical Models of Leaf Photosynthesis. CSIRO, Collingwood, Austrália
Xu, Z., Jiang, Y. & Zhou, G. (2015). Response and adaptation of photosynthesis, respiration, and antioxidant systems to elevated CO2 with environmental stress in plants. Frontiers in Plant Science, 6, 701.
Wang, J., Hasegawa, T., Li, L., Lam, S. K., Zhang, X., Liu, X. & Genxing, P. (2019). Changes in grain protein and amino acids composition of wheat and rice under short term increased [CO2] and temperature of canopy air in a paddy from East China, New Phytologist, 222(2),726-734.
Wang J., Liu X., Zhang X., Smith P., Li L., Filley, T. R., cheng, K., Shen, M., He, Y. & Pan G. (2016). Size and variability of crop productivity both impacted by CO2 enrichmentand warming – a case study of 4 year field experiment in a Chinese paddy. Agriculture, Ecosystems & Environment, 221, 40–49.
wang, T., Huang, J., He, X., Wu, J., Fang, M. & Cheng, J. (2014). CO2 Fertilization system integrated with a low-cost direct air capture technology. Energy Procedia, 63, 6842-6852.
Walter, L. C., Rosa, H. T. & Streck N. A. (2015). Mecanismos de aclimatação das plantas a elevada concentração de CO2. Ciencia Rural, 45(9), 1564.
Wilker, J. L., Navabi, A., Rajcan, I., Marsolais, F., Hill, B., Torkamaneh, D. & Pauls, K. P. (2019). Agronomic Performance and Nitrogen Fixation of Heirloom and Conventional Dry Bean Varieties Under Low-Nitrogen Field Conditions. Frontiers in Plant Science.10, 952.
Yamori, W., Suzuki, K. Noguchi, K. Nakai, M., & Terashima, I. (2006). Effects os rubisco kinetics and rubisco activation state on the temperature dependence of the photosynthetic rate in spinach leaves from contrasting growth temperatures. Plant, Cell, Environment, 29(8), 1659-1670.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Fabíola Mendes Braga; Evander Alves Ferreira; Cássia Michelle Cabral; Igor Costa de Freitas; Josiane Costa Maciel; Maria Stêfany Silveira Freitas; Ignácio Aspiazu; José Barbosa dos Santos; Luiz Arnaldo Fernandes; Leidivan de Almeida Frazão; Regynaldo Arruda Sampaio
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.