Antileishmania, antimalarial and antitrypanosome potential of Casearia species: An integrative review
DOI:
https://doi.org/10.33448/rsd-v10i7.16743Keywords:
Casearia; Leishmania; Malaria; Chagas Disease.Abstract
One of the greatest challenges in the treatment of parasitic diseases is the resistance developed by the parasites against the available drugs. Therefore, the search for therapeutic alternatives is urgent. This study carried out an integrative review of the literature that evaluated the antileishmanial, antimalarial and antitrypanosome potential of plants of the genus Casearia. The search for scientific articles was carried out on the Portal of Journals from CAPES, Biblioteca Virtual em Saúde (BVS), PUBMED and SCIELO, using the following descriptors: Casearia and antileishmania; Casearia and antimalárico; and Casearia and antitrypanosoma. A total of 122 publications were collected for screening, of which 11 were included in the integrative review. In the antileishmania activity, Casearia sylvestris stood out, with the hexane extract of the wood and stem bark and the ethanolic extract of the root bark showing activity against different species of Leishmania (IC50<100 µg/mL), but with high toxicity (CC50<100 µg/mL). Among the isolated substances, the flavonoid Tricina was shown to be active against Leishmania and non-cytotoxic. Regarding antimalarial activity, 11 extracts from 3 species, C. elliptica, C. coriaceae and C. sylvestris were shown to be active (IC50 <100 µg/mL), however, they showed high toxicity. In the antitrypanosome activity, casearins isolated from the leaves of C. sylvestris, showed great potential against the trypomastigote form of T. cruzi (IC50<3.0 µg/mL), however, they showed high toxicity. Casearia species are therefore promising in terms of their antiparasitic activity, but their toxicity is a problem. However, the flavonoids of the species have a good selectivity index and, molecular alterations and/or adequate formulations can reduce the toxicity of the other components.
References
Alvar, J., Vélez, I. D., Bern, C., Herrero, M., Desjeux, P., Cano, J., & WHO Leishmaniasis Control Team. (2012). Leishmaniasis worldwide and global estimates of its incidence. PloS one, 7(5), e35671. https://doi.org/10.1371/journal.pone.0035671.
Antinarelli, Luciana M. R., Pinto, Nícolas C., Scio, Elita, & Coimbra, Elaine S. (2015). Antileishmanial activity of some Brazilian plants, with particular reference to Casearia sylvestris. Anais da Academia Brasileira de Ciências, 87(2), 733-742. https://doi.org/10.1590/0001-3765201520140288.
Armstrong, J. S. (2006). Mitochondrial membrane permeabilization: the sine qua non for cell death. Bioessays, 28(3), 253-260. https://doi.org/10.1002/bies.20370.
Belaunzarán, M. L. (2015). Enfermedad de Chagas: globalización y nuevas esperanzas para su cura. Revista argentina de microbiología, 47(2), 85-87. https://doi.org/10.1016/j.ram.2015.04.001.
Borges, M. H. (1997). Ação antipeçonhenta do extrato vegetal de Casearia sylvestris (Inibição da atividade fosfolipase A2, hemorrágica e miotóxica de venenos animais pelo extrato de Casearia sylvestris (FLACOURTIACEAE). Biotecnologia Ciência & Desenvolvimento, 1(4).
Borges, M. H. (1998). Inibição dos principais efeitos tóxicos causados por venenos animais pelo extrato vegetal de Casearia sylvestris (Flacourtiaceae). http://doi.org/10.14393/ufu.di.1998.26.
Borges, M. H., Jamal, C. M., dos Santos, D. C. M., Raslan, D. S., De Lima, M. E., Bioquímica, T. A. D., & Imunologia, I. U. (2000). Partial purification of Casearia sylvestris SA. Extract and its anti-PLA2 action. Comp. Biochem. Physiol. Ser. B. B, 127, 21-30.
Bou, D. D, Tempone, A. G, Pinto, É. G., Lago, J. H, & Sartorelli, P. (2014). Atividade antiparasitária e efeito de casearinas isoladas de Casearia sylvestris na membrana plasmática de Leishmania e Trypanosoma cruzi. Phytomedicine: jornal internacional de fitoterapia e fitofarmacologia, 21 (5), 676–681. https://doi.org/ 10.1016/j.phymed.2014.01.004.
Brasil. Programa Nacional de Prevenção e Controle da Malária. 2007.
Brígido, H. P. C.; Silva e Silva, J. V., Bastos, M. L. C.; Correa-Barbosa, J.; Sarmento, R. M.; Costa, E. V. S.; Marinho, A. M. do R.; Coelho-Ferreira, M. R.; Silveira, F. T.; & Dolabela, M. F. (2020). Atividade antileishmania de Annona glabra L. (Annonaceae). Revista Eletrônica Acervo Saúde, (57), e3701. https://doi.org/ 10.25248/reas.e3701.2020.
Costa, F. B.; Vichnewisk, W.; Albuquerque, S. Terpenóides bioativos de Viguiera aspillioides Gardn. (Asteraceae) com atividade tripanossomicida. 18ª Reunião da Sociedade Brasileira de Química, 1995.
da Silva, E. R., Maquiaveli, C., & Magalhães, P. P. (2012). The leishmanicidal flavonols quercetin and quercitrin target Leishmania (Leishmania) amazonensis arginase. Experimental parasitology, 130(3), 183–188. https://doi.org/10.1016/j.exppara.2012.01.015.
De Castro, S. L. (1993). The challenge of Chagas' disease chemotherapy: an update of drugs assayed against Trypanosoma cruzi. Acta tropica, 53(2), 83-98. https://doi.org/10.1016/0001-706X(93)90021-3.
De Mesquita, M. L., Grellier, P., Mambu, L., De Paula, J. E., & Espindola, L. S. (2007). In vitro antiplasmodial activity of Brazilian Cerrado plants used as traditional remedies. Journal of Ethnopharmacology, 110(1), 165-170. https://doi.org/ 10.1016/j.jep.2006.09.015. Epub 2006 Sep 23.
Di Pasqua, R., Betts, G., Hoskins, N., Edwards, M., Ercolini, D., & Mauriello, G. (2007). Membrane toxicity of antimicrobial compounds from essential oils. Journal of agricultural and food chemistry, 55(12), 4863-4870. https://doi.org/10.1021/jf0636465.
Drugs for Neglected Diseases Initiative. (2018). Dndi annual report 2018. dndi.org/wp-content/uplods/2019/07/DNDi_2018_AnnualReport.pdf.
Ferreira, P. M. P., Costa-Lotufo, L. V., Moraes, M. O., Barros, F. W., Martins, A., Cavalheiro, A. J., & Pessoa, C. (2011). Folk uses and pharmacological properties of Casearia sylvestris: a medicinal review. Anais da Academia Brasileira de Ciências, 83(4), 1373-1384. https://doi.org/10.1590/S0001-37652011005000040
Ferreira, P.M. P., Santos, A. G., Tininis, A. G., Costa, P.M., Cavalheiro, A. J., Bolzani, V. S., & Pessoa, C. (2010). A casearina X exibe efeitos citotóxicos em células de leucemia desencadeadas pela apoptose. Interações chemico-biológicas, 188(3), 497-504. https://doi.org/10.1016/j.cbi.2010.08.008.
Filippin, F. B., Souza, L. C. (2006). Eficiência terapêutica das formulações lipídicas de anfotericina B. Revista Brasileira de Ciências Farmacêuticas, 42(2). https://doi.org/10.1590/S1516-93322006000200003.
Flora Brasiliensis. 13, 483-484, 1871. <http://florabrasiliensis.cria.org.br/fviewer>.
Fonseca-Silva, F., Inacio, J. D., Canto-Cavalheiro, M. M., & Almeida-Amaral, E. E. (2011). Reactive oxygen species production and mitochondrial dysfunction contribute to quercetin induced death in Leishmania amazonensis. PloS one, 6(2), e14666. https://doi.org/10.1371/journal.pone.0014666.
França, T. C., Santos, M. G. D., & Figueroa-Villar, J. D. (2008). Malária: aspectos históricos e quimioterapia. Química Nova, 31(5), 1271-1278. https://doi.org/10.1590/S0100-40422008000500060.
Gonzaga dos Santos, A., Pinheiro Ferreira, P. M., Magela Vieira Júnior, G., Perez, C. C., Gomes Tininis, A., Silva, G. H., & Cavalheiro, A. J. (2010). Casearin X, its degradation product and other clerodane diterpenes from leaves of Casearia sylvestris: evaluation of cytotoxicity against normal and tumor human cells. Chemistry & biodiversity, 7(1), 205-215. https://doi.org/10.1002/cbdv.200800342.
Graul, A. I. (2001). The year's new drugs. Drug news & perspectives, 14(1), 12-31.
Gunasekera, S. P., Sultanbawa, M. U. S., & Balasubramaniam, S. (1977). Triterpenes of some species of Flacourtiaceae. Phytochemistry. Disponível em: Triterpenes of some species of Flacourtiaceae (fao.org).
Howard, R. A. (1989). Flora of the Lesser Antilles, Leeward and Windward Islands: Vol. 5: Dicotyledoneae-Part 2 by Richard A. Howard & Allan J. Bornstein. Arnold Arboretum, Harvard Univ.
Kanokmedhakul, S., Kanokmedhakul, K., Kanarsa, T., & Buayairaksa, M. (2005). New Bioactive Clerodane Diterpenoids from the Bark of Casearia g rewiifolia. Journal of natural products, 68(2), 183-188. https://doi.org/10.1021/np049757k
Klayman, D. L. (1985). Qinghaosu (artemisinin): an antimalarial drug from China. Science, 228(4703), 1049-1055. https://doi.org/10.1126/science.3887571.
Ledoux, A., Cao, M., Jansen, O., Mamede, L., Campos, P. E., Payet, B., & Smadja, J. (2018). Antiplasmodial, anti-chikungunya virus and antioxidant activities of 64 endemic plants from the Mascarene Islands. International journal of antimicrobial agents, 52(5), 622-628. https://doi.org/10.1016/j.ijantimicag.2018.07.017
Marquete, R., & Vaz, A. M. S. D. F. (2007). The genus Casearia in the state of Rio de Janeiro, Brazil. Rodriguésia, 58(4), 705-738. https://doi.org/10.1590/2175-7860200758401
Marr, A. K., McGwire, B. S., & McMaster, W. R. (2012). Modes of action of Leishmanicidal antimicrobial peptides. Future microbiology, 7(9), 1047-1059. https://doi.org/10.2217/fmb.12.85.
Mesquita, M. L., Desrivot, J., Bories, C., Fournet, A., Paula, J. E., Grellier, P., & Espindola, L. S. (2005). Antileishmanial and trypanocidal activity of Brazilian Cerrado plants. Memorias do Instituto Oswaldo Cruz, 100(7), 783–787. https://doi.org/10.1590/s0074-02762005000700019
Mittra, B., Saha, A., Roy Chowdhury, A. et al. Luteolin, an Abundant Dietary Component is a Potent Anti-leishmanial Agent that Acts by Inducing Topoisomerase II-mediated Kinetoplast DNA Cleavage Leading to Apoptosis. Mol Med 6, 527–541 (2000). https://doi.org/10.1007/BF03401792.
Moradi-Afrapoli, F., Ebrahimi, S. N., Smiesko, M., Raith, M., Zimmermann, S., Nadjafi, F., & Hamburger, M. (2013). Bisabololoxide derivatives from Artemisia persica, and determination of their absolute configurations by ECD. Phytochemistry, 85, 143-152. https://doi.org/10.1016/j.phytochem.2012.08.017.
Moreira, Raquel Regina Duarte, Santos, André Gonzaga dos, Carvalho, Flavio Alexandre, Perego, Caio Humberto, Crevelin, Eduardo José, Crotti, Antônio Eduardo Miller, Cogo, Juliana, Cardoso, Mara Lane Carvalho, & Nakamura, Celso Vataru. (2019). Antileishmanial activity of Melampodium divaricatum and Casearia sylvestris essential oils on Leishmania amazonensis. Revista do Instituto de Medicina Tropical de São Paulo, 61, e33. Epub July 01, 2019. https://doi.org/10.1590/s1678-9946201961033.
Morita, H., Nakayama, M., Kojima, H., Takeya, K., Itokawa, H., Schenkel, e. P., & Motidome, M. (1991). Structures and cytotoxic activity relationship of casearins, new clerodane diterpenes from Casearia sylvestris Sw. Chemical and Pharmaceutical Bulletin, 39(3), 693-697. https://doi.org/10.1248/cpb.39.693.
Mosaddik, M. A., Banbury, L., Forster, P., Booth, R., Markham, J., Leach, D., & Waterman, P. G. (2004). Screening of some Australian Flacourtiaceae species for in vitro antioxidant, cytotoxic and antimicrobial activity. Phytomedicine, 11(5), 461-466. https://doi.org/10.1016/j.phymed.2003.12.001.
Mosaddik, M. A., Forster, P. I., Booth, R., & Waterman, P. G. (2007). Clerodane diterpenes from the stems of Casearia grewiifolia var. gelonioides (Flacourtiaceae/Salicaceae sensu lato). Biochemical systematics and ecology, 9(35), 631-633. https://doi.org/10.1016/j.bse.2007.03.003.
Oberlies, N. H., Burgess, J. P., Navarro, H. A., Pinos, R. E., Fairchild, C. R., Peterson, R. W., ... & Wall, M. E. (2002). Novel bioactive clerodane diterpenoids from the leaves and twigs of Casearia sylvestris. Journal of Natural Products, 65(2), 95-99. https://doi.org/10.1021/np010459m.
Prieto, A. M., dos Santos, A. G., Oliveira, A. P. S., Cavalheiro, A. J., Silva, D. H., Bolzani, V. S., ... & Soares, C. P. (2013). Assessment of the chemopreventive effect of casearin B, a clerodane diterpene extracted from Casearia sylvestris (Salicaceae). Food and chemical toxicology, 53, 153-159. https://doi.org/10.1016/j.fct.2012.11.029.
Raslan, D. S., Jamal, C. M., Duarte, D. S., Borges, M. H., & De Lima, M. E. (2002). Anti-PLA2 action test of Casearia sylvestris Sw. Bollettino Chimico Farmaceutico, 141(6), 457-460. <https://europepmc.org/article/med/12577517>.
Rassi Jr, A., Rassi, A., & Marin-Neto, J. A (2010). Doença de Chagas. The Lancet , 375 (9723), 1388-1402. https://doi.org/10.1016/S0140-6736(10)60061-X.
Santos, A. L., Yamamoto, E. S., Passero, L. F. D., Laurenti, M. D., Martins, L. F., Lima, M. L., ... & Sartorelli, P. (2017). Antileishmanial activity and immunomodulatory effects of tricin isolated from leaves of Casearia arborea (Salicaceae). Chemistry & biodiversity, 14(5), e1600458. https://doi.org/10.1002/cbdv.201600458.
Santos, A. O., Ueda-Nakamura, T., Dias Filho, B. P., Junior, V. F. V., Pinto, A. C., & Nakamura, C. V. (2008). Effect of Brazilian copaiba oils on Leishmania amazonensis. Journal of ethnopharmacology, 120(2), 204-208. https://doi.org/10.1590/S0074-02762013000100010.
Santos, L. S., & Nogemz,T.(1995). A diterpene from Mikania obtusata active on Trypanosoma cruzi. Planta Med, 61, 85-37. https://doi.org/10.1055/s-2006-958011.
Shaari, K., & Waterman, P. G. (1994). Podophyllotoxin-type lignans as major constituents of the stems and leaves of Casearia clarkei. Journal of Natural Products, 57(6), 720-724. https://doi.org/10.1021/np50108a006
Silva, S. L. D., Chaar, J. D. S., Figueiredo, P. D. M. S., & Yano, T. (2008). Cytotoxic evaluation of essential oil from Casearia sylvestris Sw on human cancer cells and erythrocytes. Acta Amazonica, 38(1), 107-112. https://doi.org/10.1590/S0044-59672008000100012.
Simonsen, H. T., Nordskjold, J. B., Smitt, U. W., Nyman, U., Palpu, P., Joshi, P., & Varughese, G. (2001). In vitro screening of Indian medicinal plants for antiplasmodial activity. Journal of Ethnopharmacology, 74(2), 195-204. https://doi.org/10.1016/s0378-8741(00)00369-x.
Soares Sobrinho, J. L., Medeiros, F. P. de M., de La Roca, M. F., Silva, K. E. R., Lima, L. N. A., & Rolim Neto, P. J. (2007). Delineamento de alternativas terapêuticas para o tratamento da doença de Chagas. Revista De Patologia Tropical / Journal of Tropical Pathology, 36(2), 103–118. https://doi.org/10.5216/rpt.v36i2.1783.
Takahashi, J. A., Boaventura, M. A. D., Oliveira, A. B., Chiari, E., & Vieira, H. S. (1994). Isolamento e atividade tripanossomicida de diterpenos caurânicos de Xylopia frutescens.
Talapatra, S. K., Ganguly, N. C., Goswami, S., & Talapatra, B. (1983). Chemical constituents of Casearia graveolens: some novel reactions and the preferred molecular conformation of the major coumarin, micromelin. Journal of natural products, 46(3), 401-408. https://doi.org/10.1021/np50027a018
Tariku, Y., Hymete, A., Hailu, A., & Rohloff, J. (2010). Essential-oil composition, antileishmanial, and toxicity study of Artemisia abyssinica and Satureja punctata ssp. punctata from Ethiopia. Chemistry & biodiversity, 7(4), 1009–1018. https://doi.org/10.1002/cbdv.200900375.
Tropical Plant Database. (2006).
Van Agtmael, M. A., Eggelte, T. A., & van Boxtel, C. J. (1999). Artemisinin drugs in the treatment of malaria: from medicinal herb to registered medication. Trends in Pharmacological sciences, 20(5), 199-205. https://doi.org/10.1016/S0165-6147(99)01302-4.
Vieira Júnior, G. M. (2010). Contribuição ao estudo dos metabólitos secundários do gênero Casearia e de algumas de suas atividades biológicas. <http://hdl.handle.net/11449/105774>.
Waldman, E. A., & Sato, A. P. S. (2016). Trajetória das doenças infecciosas no Brasil nos últimos 50 anos: um contínuo desafio. Revista de Saúde Pública , 50 , 68. https://doi.org/10.1590/S1518-8787.2016050000232.
Wang, W., Li, X. C., Ali, Z., & Khan, I. A. (2009). Two new C13 nor-isoprenoids from the leaves of Casearia sylvestris. Chemical and Pharmaceutical Bulletin, 57(6), 636-638. https://doi.org/10.1248/cpb.57.636
Weniger, B., Haag–Berrurier, M., Rohmer, M., & Anton, R. (1978). Some constituents of Casearia ilicifolia Vent. Planta Medica, 33(02), 170-172. https://doi.org/10.1055/s-0028-1097371
World Health Organization. (2015) Chagas disease (American trypanosomiasis) http://www.who.int/mediacentre/factsheets/fs340/en/.
World Health Organization. (2017) WHO. Wold malaria report 2017. https://www.who.int/malaria/publications/world-malaria-report-2017.
World Health Organization. (2019). Leishmanione. https://www.who.int/health-topics/leishmaniasis#tab=tab_1.
World Health Organization. (2019). World malaria report 2019 https://www.who.int/publications/i/item/world-malaria-report-2019.
Wyrepkowski, C. D. C. (2010). Estudo fitoquímico e bioatividade de extratos de casearia javitensis kunth. <https://tede.ufam.edu.br/handle/tede/225>.
Xia, L., Guo, Q., Tu, P., & Chai, X. (2015). The genus Casearia: a phytochemical and pharmacological overview. Phytochemistry Reviews, 14(1), 99-135. https://doi.org/10.1007/s11101-014-9336-6.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Maiara de Souza Oliveira; Marjorie Caroline Picanço da Silva; Pamela Brandão Cardoso; Thiago Freitas Silva; Heliton Patrick Cordovil Brigido
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.