Dopamine docking studies of biologically active metabolites from Curcuma longa L.
DOI:
https://doi.org/10.33448/rsd-v10i7.16992Keywords:
Stigmasterol; β-sitosterol; Cholest-5-en-3-one; Cholestan-3-ol,2-methylene- (3β, 5α); Dopamine receptors; Curcuma longa.Abstract
The dopaminergic system is involved in a wide range of neuropsychiatric and neurodegenerative disorders. The lack of receptor subtype specificity is related to several pharmacological side effects that are observed during therapy among parkinsonian and schizophrenic patients. It is of paramount importance to search for new compounds that act on dopamine receptors with therapeutic potential, higher clinical effectiveness, and fewer adverse effects. In the present study, we performed a molecular docking study of D2, D3, and D4 receptor interactions with 92 metabolites from Curcuma longa using an in silico approach. We sought to identify compounds for possible drug development. A virtual library of compounds was built using molecules that were identified in the phytochemical characterization of C. longa. Protocols that were validated by redocking were applied to a virtual scan of this library using the Autodock-v4.2.3, Autodock Vina, and Molegro-v6.0 Virtual Docker programs, with four repetitions each. The three-dimensional structures of D2, D3, and D4 receptors in complex with risperidone, eticlopride, and nemonapride were obtained from the Protein Data Bank. Four compounds—stigmasterol, β-sitosterol, cholest-5-en-3-one, and cholestan-3-ol,2-methylene-(3β, 5α)—were the most likely to bind D2, D3, and D4 dopamine receptors, suggesting their potential for possible drug development.
References
Alexander, G. E. (2004). Biology of Parkinson's disease: pathogenesis and pathophysiology of a multisystem neurodegenerative disorder. Dialogues in clinical neuroscience, 6(3), 259–280. Doi: 10.31887/DCNS.2004.6.3/galexander.
Alfio, S. T., Laudani, S., Contarini, G., Luca, A. D., Geraci, F., Managò, F., Papaleo, F., Salomone, S., Drago, F. & Leggio, G.M. (2020). Dopamine, Cognitive Impairments and Second-Generation Antipsychotics: From Mechanistic Advances to More Personalized Treatments. Pharmaceuticals. 13, 365. Doi: 10.3390/ph13110365.
Araújo, C. A. C. & Leon, L. L. (2001). Biological activities of Curcuma longa L. Memórias do Instituto Oswaldo Cruz. 96(5), 723-728. Doi: 10.1590/S0074-02762001000500026.
Awad, A. B., Chan, K. C., Downie, A. C. & Fink, C. S. (2009). Peanuts as a source of β-sitosterol, a sterol with anticancer properties. Nutrition and Cancer. 36(2), 238-241. Doi: 10.1207/S15327914NC3602_14.
Ayati1, Z., Ramezani, M., Amiri, M.S., Moghadam, A.T., Rahimi, H., Abdollahzade, A., Sahebkar, A. & Emami1, S.A. (2019). Ethnobotany, Phytochemistry and Traditional Uses of Curcuma spp. and Pharmacological Profile of Two Important Species (C. longa and C. zedoaria): A Review. Current Pharmaceutical Design. 25, 871-935. Doi: 10.2174/1381612825666190402163940.
Badgaiyan, R. (2016). Dynamic molecular imaging guides treatment options for attention deficit hyperactive disorder (ADHD). Journal of Nuclear Medicine. 57 (2), 272.
Baskar, A. A., Numair, K. S., Paulraj, G. & Alsaif, M. (2012). Ignacimuthu S. β-sitosterol prevents lipid peroxidation and improves antioxidant status and histoarchitecture in rats with 1,2-dimethylhydrazine-induced colon cancer. Journal of Medicinal Food. 15(4), 335-43. Doi: 10.1089/jmf.2011.1780.
Bastos, D. H. M., Rogero, M. M. & Arêas, J. A. G. (2009). Mecanismos de ação de compostos bioativos dos alimentos no contexto de processos inflamatórios relacionados à obesidade. Arquivos Brasileiros de Endocrinologia & Metabologia. 53(5), 646-656. Doi: 10.1590/S0004-27302009000500017.
Bortolucci, W. C., Trettel, J. R., Bernardi, D. M, Souza, M. M. Q, Lopes, A. D., Lovato, E. C. W, Lívero, F. A. R., Silva, G. J., Magalhães, H. M., Souza, S.G.H., Gazim, Z.C. & Colauto, N.B. (2020). Therapeutic potential of Zingiberaceae in Alzheimer's disease. Boletin Latinoamericano y Del Caribe de Plantas Medicinales y Aromáticas. 19 (5), 428-465. Doi: 10.37360/blacpma.20.19.5.30.
Briggs, A., Wild, D., Lees, M., Reaney, M., Dursun S., Parry, D. & Mukherjee, J. (2008). Impact of schizophrenia and schizophrenia treatment-related adverse events on quality of life: direct utility elicitation. Health and Quality of Life Outcomes. 6, 105. Doi: 10.1186/1477-7525-6-105.
Brisch, R., Saniotis, A., Wolf, R., Bielau, H., Bernstein, H. G., Steiner, J., Bogerts, B., Braun, K., Jankowski, Z., Kumaratilake, J., Henneberg, M. & Gos, T. (2014). The role of dopamine in schizophrenia from a neurobiological and evolutionary perspective: old fashioned, but still in vogue. Frontiers in psychiatry, 5, 47. Doi: 10.3389/fpsyt.2014.00047.
Broft, A., Slifstein, M., Osborne, J., Kothari, P., Morim, S., Shingleton, R., Kenney, L., Vallabhajosula, S., Attia, E., Martinez, D. & Walsh, B. T. (2015). Striatal DA type 2 receptor availability in anorexia nervosa. Psychiatry Research: Neuroimaging. 233(3), 380–387. Doi: 10.1016/j.pscychresns.2015.06.013.
Brunelin, J., Fecteau, S. & Suaud-Chagny, M.F. (2013). Abnormal striatal DA transmission in schizophrenia. Current Medicinal Chemistry. 20(3), 397–404. Doi: 10.2174/0929867311320030011.
Bueschbell, B., Barreto, C., Preto, A. J., Schiedel, A.C. & Moreira, I. S. (2019). A Complete Assessment of DA Receptor- Ligand Interactions through Computational Methods. Molecules (Basel, Switzerland). 24(7), 1196. Doi: 10.3390/molecules24071196.
Chaurasiya, S., Kaur, P., Nayak, S. K. & Khatik, G. L. (2016). Virtual screening for identification of novel potent EGFR inhibitors through AutoDock Vina molecular modeling software. Journal of Chemical and Pharmaceutical Research. 8(4), 353-360.
Conn, K. A., Burne, T. H. J. & Kesby, J. P. (2020). Subcortical DA and Cognition in Schizophrenia: Looking Beyond Psychosis in Preclinical Models. Frontiers in Neuroscience. 14, 542. Doi: 10.3389/fnins.2020.00542. eCollection 2020.
Cuny, G. D. (2012). Neurodegenerative diseases: challenges and opportunities. Future Medicinal Chemistry, 4(13), 1647–1649. Doi: 10.4155/fmc.12.123.
Cunha, C., Wietzikoski, E. C., Bortolanza, M., Dombrowski, P. A., Dos Santos, L. M., Boschen, S. L., Miyoshi, E., Vital, M. A., Boerngen-Lacerda, R. & Andreatini, R. (2009a). Non-motor function of the midbrain DArgic neurons. Journal of neural transmission. Supplementum. (73), 147-160.
Cunha, C., Wietzikoski, E. C., Dombrowski, P., Bortolanza, M., Santos, L. M., Boschen, S. L. & Miyoshi, E. (2009b). Learning processing in the basal ganglia: a mosaic of broken mirrors. Behavioural Brain Research. 199(1), 157-170. Doi: 10.1016/j.bbr.2008.10.001.
Dallakyan, S., & Olson, A. J. (2015). Small-molecule library screening by docking with PyRx. Methods in molecular biology. 1263, 243-250. Doi: 10.1007/978-1-4939-2269-7_19.
Dong, M. X., Chen, G. H. & Hu, L. (2020). DArgic System Alteration in Anxiety and Compulsive Disorders: A Systematic Review of Neuroimaging Studies. Frontiers in Neuroscience. 14, 608520. Doi: 10.3389/fnins.2020.608520.
Durães, F., Pinto, M. & Sousa, E. (2018). Old drugs as new treatments for neurodegenerative diseases. Pharmaceuticals (Basel). 11(2), 44. Doi: 10.3390/ph11020044.
Farooqui, A. A. & Farooqui, T. (2019). Chapter 18 - Therapeutic Potentials of Curcumin in Parkinson’s Disease, Editor(s): Tahira Farooqui, Akhlaq A. Farooqui, Curcumin for Neurological and Psychiatric Disorders, Academic Press, 333-344. Doi:10.1016/B978-0-12-815461-8.00018-9.
Fernandes, L. C., Santos, A. G., Sampaio, T. B., Sborgi, S., Prediger, R., Ferro, M. M., Franco, G., Lipinski, L. & Miyoshi, E. (2020). Exposure to paraquat associated with periodontal disease causes motor damage and neurochemical changes in rats. Human & experimental toxicology. 40(1), 81-89. Doi: 10.1177/0960327120938851.
Fontoura, J. L., Baptista, C., Pedroso, F. B., Pochapski, J.A., Miyoshi, E. & Ferro, M. M. (2017). Depression in Parkinson's Disease: The Contribution from Animal Studies. Parkinson's Disease. 9124160.
Galaj, E., Newman, A. H. & Xi, Z. X. (2020). Dopamine D3 receptor-based medication development for the treatment of opioid use disorder: Rationale, progress, and challenges. Neuroscience & Biobehavioral Reviews. 114, 38–52. Doi: 10.1016/j.neubiorev.2020.04.024.
Gan, L., Falzone, T. L., Zhang, K., Rubinstein, M., Baldessarini, R. J. & Tarazi, F. I. (2004). Enhanced expression of dopamine D(1) and glutamate NMDA receptors in dopamine D(4) receptor knockout mice. Journal of molecular neuroscience. 22(3), 167–178. Doi: 10.1385/JMN:22:3:167.
Gildea, J. J., Xu, P., Kemp, B. A., Carey, R. M., Jose, P. A. & Felder, R. A. (2019). The Dopamine D1 Receptor and Angiotensin Type-2 Receptor are Required for Inhibition of Sodium Transport Through a Protein Phosphatase 2A Pathway. Hypertension. 73(6), 1258–1265. Doi: 10.1161/HYPERTENSIONAHA.119.12705.
Grace, A.A. (2012). DA system dysregulation by the hippocampus: implications for the pathophysiology and treatment of schizophrenia. Neuropharmacology. 62(3), 1342-8. Doi: 10.1016/j.neuropharm.2011.05.011.
Grimes, D., Fitzpatrick, M., Gordon, J., Miyasaki, J., Fon, E.A., Schlossmacher, M., Suchowersky, O., Rajput, A., Lafontaine, A.L, Mestre, T., Cresswell, S. A., Kalia, S. K., Schoffer, K., Zurowski, M., Postuma, R. B., Udow, S., Fox, S., Barbeau, P. & Hutton, B. (2019). Canadian guideline for Parkinson disease. CMAJ. 9(191), E989–E1004. Doi: 10.1503/cmaj.181504.
Gurevich, E. V. & Joyce, J. N. (1999). Distribution of dopamine D3 receptor expressing neurons in the human forebrain: comparison with D2 receptor expressing neurons. Neuropsychopharmacology. 20(1), 60-80. Doi: 10.1016/S0893-133X(98)00066-9.
Haque, N., Hannan, A. & Dash, R. (2019). Il Soo Moon Natural LXRβ agonist stigmasterol confers protection against excitotoxicity after hypoxia- reoxygenation (H/R) injury via regulation of mitophagy in primary hippocampal neurons. bioRxiv. 707059. Doi: 10.1101/707059.
Hisahara, S. & Shimohama, S. (2011). DA receptors and Parkinson's disease. International journal of medicinal chemistry. 403039. Doi: 10.1155/2011/403039.
Horga, G., Cassidy, C.M., Xu, X., Moore, H., Slifstein, M., Van Snellenberg, J. X. & Abi-Dargham, A. (2016). Dopamine-Related Disruption of Functional Topography of Striatal Connections in Unmedicated Patients With Schizophrenia. JAMA Psychiatry. 73 (8), 862–870. Doi: 10.1001/jamapsychiatry.2016.0178.
Hou, H., Wang, C., Jia, S., Hu, S., & Tian, M. (2014). Brain dopaminergic system changes in drug addiction: a review of positron emission tomography findings. Neuroscience Bulletin. 30, 765–776. Doi: 10.1007/s12264-014-1469-5.
Hou, Y., Dan, X., Babbar, M., Wei, Y., Hasselbalch, S.G., Croteau, D.L. & Bohr, V.A. (2019). Ageing as a risk factor for neurodegenerative disease. Nature Reviews Neurology. 15(10), 565-581. Doi: 10.1038/s41582-019-0244-7.
Hynes, C., McWilliams, S., Clarke, M., Fitzgerald, I., Feeney, L., Taylor, M., Boland, F. & Keating, D. (2020). Check the effects: systematic assessment of antipsychotic side-effects in an inpatient cohort. Therapeutic advances in psychopharmacology. 10, 2045125320957119. Doi: 10, 2045125320957119.
Jaber, M., Robinson, S.W., Missale, C. & Caron, M.G. (1996). Dopamine receptors and brain function. Neuropharmacology. 35, 1503-1519. Doi: 10.1016/s0028-3908(96)00100-1.
Ji, H. F. & Shen, L. (2014). The multiple pharmaceutical potential of curcumin in Parkinson's disease. CNS & neurological disorders drug targets. 13(2), 369-73. doi: 10.2174/18715273113129990077.
Kaur, N., Chaudhary, J., Jain, A. & Kishore, L. (2011). Stigmasterol: a comprehensive review. International Journal of Pharmaceutical Sciences and Research. 2(9), 2259-65.
Kim, M. H., Kim, S. H. & Yang, W. M. (2014). Mechanisms of Action of Phytochemicals from Medicinal Herbs in the Treatment of Alzheimerʼs Disease. Planta medica. 80 (15), 1249–1258. Doi: 10.1055/s-0034-1383038.
Kim, S., Chen, J., Cheng, T., Gindulyte, A., He, J., He, S., Li, Q., Shoemaker, B. A., Thiessen, P. A., Yu, B., Zaslavsky, L., Zhang, J. & Bolton, E. E. (2019). PubChem 2019 update: improved access to chemical data. Nucleic Acids Research. 47(D1), D1102-D1109. Doi: 10.1093/nar/gky1033.
Kim, Y. C., Alberico, S. L., Emmons, E. & Narayanan, N. S. (2015). New therapeutic strategies targeting D1-type dopamine receptors for neuropsychiatric disease. Frontiers in biology. 10(3), 230–238. Doi: 10.1007/s11515-015-1360-4.
Krup, V., Prakash, H. L. & Harini, A. (2013). Pharmacological activities of turmeric (Curcuma longa linn): A review. Homeopathy & Ayurvedic Medicine. 2(4), 1000134. Doi: 10.4172/2167-1206.1000133.
Li, H., Yang, P., Knight, W., Guo, Y., Perlmutter, J.S., Benzinger, T. L. S., Morris, J. C. & Xu, J. (2020). The interactions of DA and oxidative damage in the striatum of patients with neurodegenerative diseases. Journal of neurochemistry. 152(2), 235–251. Doi: 10.1111/jnc.14898
Liu, G. J., Wu, L., Wang, S. L., Xu, L. L., Chang, L. Y. & Wang, Y. F. (2016). Efficacy of pramipexole for the treatment of primary restless leg syndrome: a systematic review and meta-analysis of randomized clinical trials. Clinical therapeutics. 38(1), 162–179.e6. Doi: 10.1016/j.clinthera.2015.10.010.
Makhouri, F.R. & Ghasemi, J.B. (2018). In Silico Studies in Drug Research Against Neurodegenerative Diseases. Current neuropharmacology, 16(6), 664–725. Doi: 10.2174/1570159X15666170823095628.
Marchi, J. P, Lívero, F. A. R., Soares, A. A., Silva, G. J., Soares, A. K. V., Giarolo, C. M., Jacomassi, E., Souza, L. M., Bortolucci, W. C., Gazim, Z. C., Campos, C. F. A. A., Gonçalves, J. E., Alferes, C. S., Wietzikoski, S. & Lovato, E. C. W. (2021). Influence of different preparation techniques on the composition and antioxidant action of curcumin and curcuminoids. Boletín Latinoamericano y del Caribe de Plantas Medicinales, in press.
Martel, J.C. & McArthur, S.G. (2020). Dopamine Receptor Subtypes, Physiology and Pharmacology: New Ligands and Concepts in Schizophrenia. Frontiers in Pharmacology. 11, 1003. Doi: 10.3389/fphar.2020.01003.
Martinez, V.J., Asico, L.D., Jose, P.A. & Tiu, A.C. (2020). Lipid Rafts and DA Receptor Signaling. International journal of molecular sciences. 21(23), 8909. Doi: 10.3390/ijms21238909.
Miguelez, C., De Deurwaerdère, P. & Sgambato, V. (2020). Editorial: Non-DArgic Systems in Parkinson's Disease. Frontiers in pharmacology, 11, 593822. Doi: 10.3389/fphar.2020.593822.
Miodownik, C., Lerner, V., Kudkaeva, N., Lerner, P. P., Pashinian, A., Bersudsky, Y., Eliyahu, R., Kreinin, A. & Bergman, J. (2019). Curcumin as Add-On to Antipsychotic Treatment in Patients with Chronic Schizophrenia: A Randomized, Double-Blind, Placebo-Controlled Study. Clinical Neuropharmacology. 42(4), 117-122. Doi: 10.1097/WNF.0000000000000344.
Mishra, A., Singh, S. & Shukla, S. (2018). Physiological and Functional Basis of Dopamine Receptors and Their Role in Neurogenesis: Possible Implication for Parkinson's disease. Journal of experimental neuroscience, 12, 1179069518779829. Doi: 10.1177/1179069518779829.
Missale, C., Nash, S.R., Robinson, S.W., Jaber, M. & Caron., M.G. (1998). DA receptors: from structure to function. Physiol Rev. 78(1), 189-225. Doi: 10.1152/physrev.1998.78.1.189.
Miyoshi, E., Wietzikoski, S., Camplessei, M., Silveira, R., Takahashi, R. N. & Da Cunha, C. (2002). Impaired learning in a spatial working memory version and in a cued version of the water maze in rats with MPTP-induced mesencephalic DArgic lesions. Brain research bulletin. 58(1), 41-7. Doi: 10.1016/s0361-9230(02)00754-2.
Moncrieff, J., Gupta, S. & Horowitz, M. A. (2020). Barriers to stopping neuroleptic (antipsychotic) treatment in people with schizophrenia, psychosis or bipolar disorder. Therapeutic advances in psychopharmacology. 10, 2045125320937910. Doi: 10.1177/2045125320937910.
Morris, G. M., Huey, R., Lindstrom. W., Sanner, M. F., Belew, R. K., Goodsell, D. S. & Olson, A. J. (2009). AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. Journal of Computational Chemistry. 30(16), 2785-91. Doi: 10.1002/jcc.21256.
Mrzljak, L., Bergson, C., Pappy, M., Huff, R., Levenson, R. & Goldman- Rakic, P.S. (1996). Localization of dopamine D4 receptors in GABAergic neurons of the primate brain. Nature. 381, 245–248. Doi: 10.1038/381245a0.
Muhammad, A., Muhammad, J., Farhat, U., Fazal, S., Abdul, S., Gowhar, A., Muhammad, O., Muhammad, S., Ashfaq, A., Abdul, W., Mohamed, E. S., Nisar, A. & Sajjad, A. (2017). Anti-Alzheimer’s Studies on β-Sitosterol Isolated from Polygonum hydropiper L. Frontiers in Pharmacology. 8, 697. Doi: 10.3389/fphar.2017.00697.
Mythri, R. B. & Bharath, M.M. (2012). Curcumin: a potential neuroprotective agent in Parkinson's disease. Current Pharmaceutical Design. 18(1), 91-9. Doi: 10.2174/138161212798918995.
Nakamura, K., Sekine, Y., Ouchi, Y., Tsujii, M., Yoshikawa, E., Futatsubashi, M., Tsuchiya, K. J., Sugihara, G., Iwata, Y., Suzuki, K., Matsuzaki, H., Suda, S., Sugiyama, T., Takei, N. & Mori, N. (2010). Brain serotonin and DA transporter bindings in adults with high-functioning autism. Archives Of General Psychiatry. 67, 59–68. Doi: 10.1001/archgenpsychiatry.2009.137.
Neve, K. A., Seamans, J. K. & Trantham-Davidson, H. (2004). Dopamine receptor signaling. Journal of receptor and signal transduction research. 24(3), 165–205. Doi: 10.1081/rrs-200029981.
Pan, X., Kaminga, A. C., Wen, S. W., Wu, X., Acheampong, K. & Liu, A. (2019). DA and DA receptors in Alzheimer's Disease: a systematic review and network meta-analysis. Frontiers in Aging Neuroscience. 11, 175. Doi: 10.3389/fnagi.2019.00175.
Park, S.J., Kim, D. H., Jung, J.M., Kim, J.M., Cai, M., Liu, X., Hong, J. G., Lee, C. H., Lee, K. R. & Ryu, J. H. (2012). The ameliorating effects of stigmasterol on scopolamine-induced memory impairments in mice. European Journal of Pharmacology. 676 (1–3), 64-70. Doi: 10.1016/j.ejphar.2011.11.050.
Paus, S., Brecht, H. M., Ko ̈ster, J., Seeger, G., Klockgether, T., & Wu ̈llner, U. (2003). Sleep attacks, daytime sleepiness, and DA agonists in Parkinson’s disease. Movement Disorders. 18(6), 659–667. Doi: 10.1002/mds.10417.
Pereira, A. S., Shitsuka, D. M., Pereira, F. J. & Shitsuka, R. (2018) Metodologia do trabalho científico. Santa Maria: UAB / NTE / UFSM.
Peschanski, M., Defer, G., N'guyen, J., Ricolfi, F., Monfort, J., Remy, P., Geny, C., Samson, Y., Hantraye, P., Jeny, R., Gaston, A., Kéravel, Y., Degos, J. D. & Cesaro, P. (1994). Bilateral motor improvement and alteration of L-dopa effect in two patients with Parkinson’s disease following intrastriatal transplantation of foetal ventral mesencephalon. Brain. 117(3), 487–499. Doi: 10.1093/brain/117.3.487.
Raghu, G., Karunanithi, A., Kannan, I. & Preetha, L., K. (2018). Molecular docking study on curcumin and its derivatives as inhibitors of BACE1 in the treatment of Alzheimer’s disease. National Journal of Physiology, Pharmacy and Pharmacology. 8(2), 244-250. Doi:10.5455/njppp.2017.7.1038623102017.
Reichmann, H. (2016). Modern treatment in Parkinson’s disease, a personal approach. Journal of neural transmission. 123(1), 73–80. Doi: 10.1007/s00702-015-1441-1.
Shruthy, V. S. & Shakkeela, Y. (2014). In silico design, docking, synthesis, and evaluation of thiazole Schiff bases. International Journal of Pharmacy and Pharmaceutical Sciences. 6(3), 271-5.
Steeves, T. D., Ko, J. H., Kideckel, D. M., Rusjan, P., Houle, S., Sandor, P., et al. (2010). Extrastriatal dopaminergic dysfunction in tourette syndrome. Annals of Neurology. 67 (2), 170–181. Doi: 10.1002/ana.21809.
Sterling, T. & Irwin, J. J. (2015). ZINC 15 – Ligand Discovery for Everyone. Journal of Chemical Information and Modeling. 55(11), 2324-2337. Doi: 10.1021/acs.jcim.5b00559.
Surmeier, D. J., Ding, J., Day, M., Wang, Z. & Shen, W. (2007). D1 and D2 dopamine-receptor modulation of striatal glutamatergic signaling in striatal medium spiny neurons. Trends in Neuroscience. 30, 228-235. Doi: 10.1016/j.tins.2007.03.008.
Tarazi, F. I., Zhang, K. & Baldessarini, R. J. (2004). Dopamine D4 receptors: beyond schizophrenia. Journal of receptor and signal transduction research. 24, 131–147. Doi: 10.1081/rrs-200032076.
Thomsen, R. & Christensen, M. H. (2006). MolDock: A New Technique for High-Accuracy Molecular Docking. Journal of Medicinal Chemistry. 49 (11), 3315-3321. Doi: 10.1021/jm051197e.
Trott, O. & Olson, A. J. (2010). AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of computational chemistry, 31(2), 455–461. Doi: 10.1002/jcc.21334.
Vivancos, M. & Moreno, J. J. (2005). beta-Sitosterol modulates antioxidant enzyme response in RAW 264.7 macrophages. Free radical biology & medicine. 39(1), 91-7. Doi: 10.1016/j.freeradbiomed.2005.02.025.
Wang, X, Kim, J. R., Lee, S. B., Kim, Y. J., Jung, M. Y., Kwon, H. W. & Ahn, Y. J. (2014). Effects of curcuminoids identified in rhizomes of Curcuma longa on BACE-1 inhibitory and behavioral activity and lifespan of Alzheimer's disease Drosophila models. BMC Complementary and Alternative Medicine. 5(14), 88. Doi: 10.1186/1472-6882-14-88.
Wietzikoski, E. C., Boschen, S. L., Miyoshi, E., Bortolanza, M., Dos Santos, L. M., Frank, M., Brandão, M. L., Winn, P. & Da Cunha, C. (2012). Roles of D1-like DA receptors in the nucleus accumbens and dorsolateral striatum in conditioned avoidance responses. Psychopharmacology (Berl). 219(1), 159-69. Doi: 10.1007/s00213-011-2384-3.
Wooten, D., Goer, F., Beltzer, M., Vitaliano, G., Brennan, B., Crowley, D., Alpert, N., Normandin, M., Fakhri, G.E. & Pizzagalli, D. (2015). Reduced striatal DA transporter binding in major depressive disorder. Journal of Nuclear Medicine. 56(3), 527.
Yadav, M., Parle, M., Jindal, D. K. & Dhingra, S. (2018). Protective effects of stigmasterol against ketamine‐induced psychotic symptoms: Possible behavioral, biochemical and histopathological changes in mice. Pharmacological Reports. 70(3), 591-599. Doi: 10.1016/j.pharep.2018.01.001.
Yang, A. C. & Tsai, S. J. (2017). New Targets for Schizophrenia Treatment beyond the DA Hypothesis. International journal of molecular sciences. 18, 1689. Doi: 10.3390/ijms18081689.
Yang, P., Perlmutter, J. S., Benzinger, T.L.S., Morris, J. C. & Xu, J. (2020). Dopamine D3 receptor: A neglected participant in Parkinson Disease pathogenesis and treatment? Ageing Research Reviews. 57, 100994, Doi: 10.1016/j.arr.2019.100994.
Yatham, L. N., Liddle, P. F., Shiah, I.S., Lam, R.W., Ngan, E., Scarrow, G., Imperial, M., Stoessl, J., Sossi, V. & Ruth, T. J. (2002). PET study of [18F]6-fluoro-L-dopa uptake in neuroleptic and mood-stabilizer-naive first-episode nonpsychotic mania: effects of treatment with divalproex sodium. The American Psychiatric Association. 159, 768–774. Doi: 10.1176/appi.ajp.159.5.768.
Yin, Y., Liu, X., Liu, J., Cai, E., Zhao, Y., Li, H., Zhang, L., Li, P. & Gao, Y. (2018). The effect of beta-sitosterol and its derivatives on depression by the modification of 5-HT, DA and GABA-ergic systems in mice. RSC Advances. 8, 671-680. Doi: 10.1039/C7RA11364A.
Youdim, M., B. H. & Buccafusco, J. J. (2005). Multi-functional drugs for various CNS targets in the treatment of neurodegenerative disorders. Trends in Pharmacological Sciences. 26(1). Doi: 10.1016/j.tips.2004.11.007.
Yu, Z. F., Kong, L. D. & Chen, Y. (2002). Antidepressant activity of aqueous extracts of Curcuma longa in mice. Journal of Ethnopharmacology. v. 83. p. 161-165. Doi: 10.1016/S0378-8741(02)00211-8.
Yun, J. Y., Kim, Y. E., Yang, H. J., Kim, H. J. & Jeon, B. (2017). Twice-Daily versus Once-Daily Pramipexole Extended Release Dosage Regimens in Parkinson's Disease. Parkinson´s Disease. 2017, 8518929. Doi: 10.1155/2017/8518929.
Zhai, S., Shen, W., Graves, S. M. & Surmeier, D. J. (2019). Dopaminergic modulation of striatal function and Parkinson’s disease. Journal of neural transmission. 126(4), 411–422. Doi: 10.1007/s00702-019-01997-y.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Danilo Magnani Bernardi; Juliana Pelissari Marchi; Cintia de Souza Alferes Araújo; Vanessa Rodrigues do Nascimento; Diego de Souza Lima ; Samantha Wietzikoski; Marcelo Machado Ferro ; Edmar Miyoshi; Francislaine Aparecida dos Reis Lívero ; Flavio Augusto Vicente Seixas; Evellyn Claudia Wietzikoski Lovato
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.