Intrabases divergences in the mHealth era: a drug interaction investigation in an infectious-diseases hospital setting

Authors

DOI:

https://doi.org/10.33448/rsd-v10i14.17156

Keywords:

Drug prescriptions; Infectology; Mobile device; Drug interaction; Mobile health; Smartphone.

Abstract

Introduction: Information on potential drug interactions (PDI) are obtained from databases available on the web or through mobile healthcare applications (mHealth), and can prevent unfavorable clinical outcomes for patients. This study compared PDI information available in Micromedex® drug interaction checker, its web version and its mHealth app. Method: A cross-sectional study realized based on a retrospective review of drug prescriptions in a reference hospital in infectology in the Midwest Region of Brazil, 2018. We selected all prescriptions containing two or more drugs. Drugs were classified according to the first level of the Anatomical Therapeutic Chemical (ATC) classification, according to the route of administration and the number of drugs prescribed. PDIs were classified according to the severity system and four-level evidence classification system. Results: This study selected 72 patients, predominantly male, median age of 38 years, average length of stay of 15.8 days, and most diagnosed with HIV/AIDS. The most frequently prescribed anatomical groups according to ATC were digestive system and metabolism (22.1%) and general anti-infectives for systemic use (21.6%). The average number of drugs per prescription was 10.8 (SD±6.7). The Micromedex® mHealth app found 381 PDIs while its web version detected 502 PDIs, with an average of 5.3 and 7.0 and frequency of 61.1% and 72.2%, respectively. According to the severity classification in mHealth and web versions, the following stood out, respectively: 221 and 321 severe; 139 and 149 moderate. The majority (>65%) of identified PDIs had their documentation classified as reasonable. Conclusion: Digital tools although they aid decision-making, are not unanimous and consistent in detecting such interactions.

References

Cascao, P. C. (2017). Interações medicamentosas potenciais associadas à Terapia Antirretroviral. Dissertação. Dissertação de Mestrado, Faculdade de Medicina UFG, Goiânia, Brasil.

Cedraz, K. N. & Santos, M. C. J. (2014) Identificação e caracterização de interações medicamentosas em prescrições médicas da unidade de terapia intensiva de um hospital público da cidade de Feira de Santana, BA. Sociedade Brasileira de Clínica Médica, 2 (1), 12. http://files.bvs.br/upload/S/1679-1010/2014/v12n2/a4178.pdf

Correr, J. & Otuki, M. A. (2013). Prática Farmacêutica na Farmácia Comunitária (1a ed.). Porto Alegre: Artmed.

Prereira, A. S., Shitsuka, D. M., Parreira, F. J., Shitsuka, R. (2018). Metodologia da Pesquisa Científica. Núcleo de Tecnologia Educacional, Universidade Federal de Santa Maria, Santa Maria, RS. https://repositorio.ufsm.br/bitstream/handle/1/15824/Lic_Computacao_Metodologia-Pesquisa-Cientifica.pdf?sequence=1

IBM. (2019). Micromedex® Drug Interaction Checking (electronic version). IBM Wastson Health, Greenwood Village, Colorado, USA. http://www.micromedexsolutions.com

Institute of Medicine (US) Committee on Quality of Health Care in America, Kohn, L. T., Corrigan, J. M., & Donaldson, M. S. (Eds.). (2000). To Err is Human: Building a Safer Health System. National Academies Press (US).

Jodlowski, T. Z., Patel, P. N., Maische, N. M., Mildvan, D. (2011) Comparison of online drug interaction databases to evaluate antiretroviral medication interactions. Pharmacotherapy Journal, 31 (10), 312. Retrieved from: http://e-lactancia.org/media/papers/Metoprolol-BuprenorfinaBF-Pharmacother2011.pdf

Magni, A. M., Scheffer, D. K., Bruniera, P. (2011) Comportamento dos antitérmicos ibuprofeno e dipirona em crianças febris. Jornal de Pediatria, 87( 1 ), 36-42.

Machado, J. A. E., Morales, C. D. P., Hoyos, V. S. (2014). Frecuencia de potenciales interacciones medicamentosas entre antirretrovirales y otros grupos farmacológicos en pacientes colombianos. Investigaciones Andina, 16(28), 910-920. http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0124-81462014000100005&lng=en&tlng=.

Martins, J. M., Figueirêdo, T. P., Costa, S. C., Reis, A. M. M. Medicamentos que podem induzir prolongamento do intervalo QT utilizados por idosos em domicílio. Ciência Farmacêutica Básica Aplicada. 2015; 32 (2): 297-305.

Molas, E., Luque, S., Retamero, A., Echeverría-Esnal, D., Guelar, A., Montero, M., Guerri, R., Sorli, L., Lerma, E., Villar, J., & Knobel, H. (2018). Frequency and severity of potential drug interactions in a cohort of HIV-infected patients Identified through a Multidisciplinary team. HIV clinical trials, 19(1), 1–7. https://doi.org/10.1080/15284336.2017.1404690

Molloy, S. F., Bradley, J., Karunaharan, N., Mputu, M., Stone, N., Phulusa, J., Chawinga, C., Gaskell, K., Segula, D., Ming, D., Peirse, M., Chanda, D., Lakhi, S., Loyse, A., Kanyama, C., Heyderman, R. S., & Harrison, T. S. (2018). Effect of oral fluconazole 1200 mg/day on QT interval in African adults with HIV-associated cryptococcal meningitis. AIDS (London, England), 32(15), 2259–2261. https://doi.org/10.1097/QAD.0000000000001961

Monegat, M., Sermet, C., & Rococo, E. (2014). Polypharmacy: Definitions, Measurements and stakes involved in review of literature and measurement test. Questions d’économie de la santé 204 (20), 1-8.

National Health Surveillance Agency [Agência Nacional de Vigilância Sanitária - ANVISA]. (2020). Pharmacovigilance Bulletin No. 9 [Boletim de Farmacovigilância n°9]. Brasília. Retrieved from: https://www.gov.br/anvisa/pt-br/arquivos-noticias-anvisa/917json-file-1

Pauly, A., Wolf, C., Busse, M., Strauß, A. C, Krebs, S., Dorje, F., & Friedland, K. (2015). Evaluation of eight drug interaction databases commonly used in the German healthcare system. European Journal of Hospital Pharmacy , 22(3), 165-70. doi:10.1136/ejhpharm-2014-000561

Pereira, A. S., Shitsuka, D. M., Parreira, F. J., & Shitsuka, R. (2018). Metodologia da Pesquisa Científica. Núcleo de Tecnologia Educacional, Universidade Federal De Santa Maria, Santa Maria, RS. https://repositorio.ufsm.br/bitstream/handle/1/15824/Lic_Computacao_Metodologia-Pesquisa-Cientifica.pdf?sequence=1

Rang, H. P., Dale, M.M, Ritter, J. M., Flower, R. J. (2007). Farmacos antiinflamatórios e immunossupressores. Elselvier.

Reis, A. M. M. & Cassiani, S. H. B. (2011) .Prevalence of potential drug interactions in patients in an intensive care unit of a university hospital in Brazil. Clinics, 66(1), 9-15. Retrieved from: https://doi.org/10.1590/S1807-59322011000100003.

Roden, D. M. (2016). Predicting drug-induced QT prolongation and torsades de pointes. The Journal of physiology, 594(9), 2459–2468. https://doi.org/10.1113/JP270526

Santos, W. M., Secoli, S., & Padoin, S. Potenciais interações de drogas em pacientes de terapia antirretroviral. Rev. Latino-Am. Enfermagem. 2016;24:2832.

Tonini, M., Cipollina, L., Poluzzi, E., Crema, F., Corazza, G. R., & De Ponti, F. (2004). Review article: clinical implications of enteric and central D2 receptor blockade by antidopaminergic gastrointestinal prokinetics. Alimentary pharmacology & therapeutics, 19(4), 379–390. https://doi.org/10.1111/j.1365-2036.2004.01867.x

World Health Organization [WHO]. (2017a). Anatomic Therapeutic and Chemical Classification of Drugs. http://www.whocc.no/atcdd.

World Health Organization [WHO]. (2017a). Medication Without Harm. Who Global Patient Safety Challenge. file:///C:/Users/Rober/AppData/Local/Temp/WHO-HIS-SDS-2017.6-eng.pdf

Downloads

Published

14/11/2021

How to Cite

SOUZA, R. .; SILVA, P. I. da .; CASCAO, P. C. .; SOUSA, C. A.; LOPES, A. F. . Intrabases divergences in the mHealth era: a drug interaction investigation in an infectious-diseases hospital setting. Research, Society and Development, [S. l.], v. 10, n. 14, p. e559101417156, 2021. DOI: 10.33448/rsd-v10i14.17156. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/17156. Acesso em: 14 jul. 2024.

Issue

Section

Health Sciences