Characterization and viability of the stromal vascular fraction from the Bichat fat ball associated with platelets-poor plasma - an option for aesthetic treatments

Authors

DOI:

https://doi.org/10.33448/rsd-v10i8.17341

Keywords:

Fat body; Cheek; Connective tissue cells; Autologous transplant; Cell adhesion.

Abstract

Bichectomy is a procedure that consists of removing the anterior portion of the Bichat adipose body (apBAB). The cell group obtained after processing through enzymatic digestion of this tissue is called the stromal vascular fraction (SVF). The nature of the cells that make up the SVF qualifies this product for a wide range of clinical applications, especially in procedures to stimulate renewal and repair, including the aesthetic purposes of rejuvenation in the face. However, the use of this living biological material is directly related to the proper handling and transport, from its collection, processing and return for clinical application. This study aimed to characterize the SVF obtained from apBAB, and also to verify whether autologous platelet-poor plasma (PPP) is efficient in maintaining cell viability, and can be a means of transport to its mediated clinical application. Three patients with indication for having a bichectomy participated in the study. Before removing the apBAB, venous blood collection was performed to obtain the PPP. The bilateral apBAB collected was sent to the Cell Processing Center Curityba Biotech and submitted to the protocol for separation of cells from its matrix. In the end, the SVF was divided into aliquots that were packed in syringes and in culture plates and evaluated for cell viability at times 0, 24 and 48 h. Cell viability and the characterization of cells present in SVF were evaluated by means of immunophenotyping by flow cytometry and by light microscopy. A sample was kept in a culture bottle until it reached 7x106 cells to prove the presence of mesenchymal stem cells capable of remaining in standard culture. The viability presented in the PPP medium remained constant and with a viability of 70% in up to 48 h. In addition, the sample analyzed by immunophenotyping confirmed the existence of: mesenchymal and hematopoietic stem cells, endothelial cells and T cells.

References

Almeida, A. R. H., Menezes, J. A., Araújo, G. K. M., & Mafra, A. V. C. (2008). Utilização de plasma rico em plaquetas, plasma pobre em plaquetas e enxerto de gordura em ritidoplastias: análise de casos clínicos. Revista Brasileira de Cirurgia Plástica, 23(2), 82-88.

Almeida, A. R. T., & Sampaio, G. A. A. (2016). Ácido hialurônico no rejuvenescimento do terço superior da face: revisão e atualização - Parte 1. Surgery & Cosmetic Dermatology, 8(2): 148-153.

Amirkhani, M. A., Shoae-hassani, A., Soleimani, M., Hejazi, S., Ghalichi, L., & Nilforoushzadeh, M. A. (2016). Rejuvenation of facial skin and improvement in the dermal architecture by transplantation of autologous stromal vascular fraction: a clinical study. Bioimpacts, 6(3), 149-154.

Andia, I., Maffulli, N., & Burgos-Alonso, N. (2019). Stromal vascular fraction technologies and clinical applications. Expert Opinion on Biological Therapy, 19(12), 1289-1305. 10.1080/14712598.2019.1671970.

Asri, S. R., Setiati, H. D., Asrianti, D., Margono, A., Usman, M., & Yulianto, I. (2005). Optimum concentration of platelet-rich fibrin lysate for human dental pulp stem cells culture medium. Journal of International Dental and Medical Research, 12(6), 105-110.

Bongson, A., & Lee, E. H. (2005). Stem Cells: From Benchtop to Bedside Illustrated Edition.(Ed.: Ariff Bongso, National University of Singapore, Singapore)

Bora, P., & Majumdar, A. S. (2017). Adipose tissue-derived stromal vascular fraction in regenerative medicine: a brief review on biology and translation. Stem Cell Research & Therapy, 8(1), 145. 10.1186/s13287-017-0598-y.

Carvalho, A. C. C., & Goldenberg, R. C. S. (2012). Células-tronco mesenquimais: conceitos, métodos de obtenção e aplicações, (Ed. Atheneu, São Paulo).

Cohen, S. R. (2015). Commentary on: expanded stem cells, stromal-vascular fraction, and platelet-rich plasma enriched fat: comparing results of different facial rejuvenation approaches in a clinical trial. Aesthetic Surgery Journal, 36(3), 271-274.

Cohen, S. R., Hewett, S., Ross, L., Delaunay, F., Goodacre, A., Ramos, C., Leong, T., & Saad, A. (2017). Regenerative cells for facial surgery: biofilling and biocontouring. Aesthetic Surgery Journal, 37(suppl_3), S16-S32.

Condé-Green, A., Marano, A. A., Lee, E. S., Reisler, T., Price, L. A., Milner, S. M., & Granick, M. S. (2016). Fat grafting and adipose-derived regenerative cells in burn wound healing and scarring: a systematic review of the literature. Plastic and Reconstructive Surgery, 137(1), 302-312. 10.1097/PRS.0000000000001918.

Crocco, E. I., Alves, R. O., & Alessi, C. (2012). Eventos adversos do ácido hialurônico injetável. Surgical and Cosmetic Dermatology, 4(3), 259-263.

Dominici, M., Le Blanc, K., Mueller, I., Slaper-Cortenbach, I., Marini, F., Krause, D., Deans, R., Keating, A., Prockop, Dj., & Horwitz, E. (2006). Minimal criteria for defining multipotent mesenchymal stromal cells. The international society for cellular therapy position statement. The International Society for Cellular Therapy position statement, 8(4), 315-317.

Dongen, J. A. V., Stevens, H. P., Parvizi, M., Lei, B. V. D., & Harmsen, M. C. (2016). The fractionation of adipose tissue procedure to obtain stromal vascular fractions for regenerative purposes. Wound Repair and Regeneration, 24(6), 994-1003. 10.1111/wrr.12482.

Ercole, L. P., Malvezzi, M., Boaretti, A. C., Utiyama, S. R. R., Rachid, A., & Radominski, S. C. (2003). Análise imunofenotípica de subpopulações linfocitárias do sangue periférico na esclerose sistêmica. Revista Brasileira de Reumatologia, 43(3), 141-148.

Felthaus, O., Prantl, L., Skaff-Schwarze, M., Klein, S., Anker, A., Ranieri, M., & Kuehlmann B. (2017). Effects of different concentrations of Platelet-rich Plasma and Platelet-Poor Plasma on vitality and differentiation of autologous Adipose tissue-derived stem cells. Clinical Hemorheology and Microcirculation, 66(1), 47-55. 10.3233/CH-160203.

Fruhbeck, G., Gómez-Ambrosi, J., Muruzábal, F. J., & Burrell, M. A. (2001). The adipocyte: a model for integration of endocrine and metabolic signaling in energy metabolism regulation. American Journal of Physiology-Endocrinology and Metabolism, 280(6), E827-847.

Bernardino Júnior, R., da Cunha Sousa, G., Balbino Lizardo, F., Batista Bontempo, D., Prado e Guimarães, P., & Humberto Macedo, J. (2008). Corpo adiposo da bochecha: um caso de variação anatômica. Bioscience Journal, 24(4).

Marques, A. P. L., Botteon, R. C. C. M., Cordeiro, M. D., Machado, C. H., Botteon, P. T. L., Barros, J. P. N., & Spíndola, P. F. (2014). Padronização de técnica manual para obtenção de plasma rico em plaquetas de bovino. Revista Pesquisa Veterinária Brasileira, 34(Sup 1), 1-6.

Massumoto, C., Massumoto, S. M., Ayoub, C. A., & Lizier, N. F. (2014). Células-tronco da coleta aos protocolos terapêuticos. (Ed. Atheneu São Paulo).

Meirelles, L. S., Chagastelles, P., & Nardi, N. B. (2006). Mesenchymal stem cells reside in virtually all post-natal organs and tissues. Journal of Cell Science, 119(11), 2204-2213.

Ministério Da Saúde. (2010). Coleta de sangue, diagnóstico e monitoramento das DST, Aids e herpes virais.

Moseley, T. A., Zhu, M., & Hedrick, M. H. (2006). Adipose-derived stem and progenitor cells as fillers in plastic and reconstructive surgery. Plastic and Reconstr Surgery, 118(3), 121-128.

Mushahary, D., Spittler, A., Kasper, C., Weber, V., & Charwat, V. (2018). Isolation, cultivation, and characterization of human mesenchymal stem cells. Cytometry Part A, 93(1), 19-31. 10.1002/cyto.a.23242.

Oberbauer, E., Steffenhagen, C., Wurzer, C., Gabriel, C., Redl, H., & Wolbank, S. (2015). Enzymatic and non-enzymatic isolation systems for adipose tissue-derived cells: current state of the art. Cell Regeneration, 4, 7. 10.1186/s13619-015-0020-0.

Otero-Viñas, M., & Falanga, V. (2016). Mesenchymal stem cells in chronic wounds: the spectrum from basic to advanced therapy. Advances in wound care (New Rochelle), 15(4), 149-163. 10.1089/wound.2015.0627.

Pak, J., Lee, J. H., Park, K. S., Park, M., Kang, L. W., & Lee, S. H. (2017). Current use of autologous adipose tissue-derived stromal vascular fraction cells for orthopedic applications. Journal of biomedical science, 24(1), 9.

Peres, C. M., & Curi, R. (2005). Como cultivar células. (Guanabara Koogan Rio de Janeiro).

Rigotti, G., Sá, L. C., Amorim, N. F. G., Takiya, C. M., Amable, P. R., Borojevic, R., & Sbarbati, A. (2016). Expanded stem cells, stromal-vascular fraction, and platelet-rich plasma enriched fat: comparing results of different facial rejuvenation approaches in a clinical trial. Aesthetic Surgery Journal, 36(3), 261-270. 10.1093/asj/sjv231.

Rothenberg, E. V. (1992). The development of functionally responsive T cells. Advances in immuno-oncology, 51, 85-214.

Saeed, M. A., El-Rahman, M. A., Helal, M. E., Zaher, A. R., & Grawish, M. E. (2017). Efficacy of human platelet rich fibrin exudate vs fetal bovine serum on proliferation and differentiation of dental pulp stem cells. International Journal of Stem Cells, 10(1), 38-47. 15283/ijsc16067.

Silva, M. M. (2017). Efeito do secretoma de células tronco mesenquimais da derme no crescimento do pelo de camundongos (Mus musculus) C57BL/6. TCC (graduação) - Universidade Federal de Santa Catarina. Centro de Ciências Biológicas. Curso de Ciências Biológicas.

Stroparo, J. L. de O., Weiss, S. G., Fonseca, S. C. da, Spisila, L. J., Gonzaga, C. C., Oliveira, G. C., & Zielak, L. C. (2021). Biomateriais de enxerto ósseo xenogênico não interferem na viabilidade e proliferação de células-tronco de dentes decíduos esfoliados humanos - um estudo piloto in vitro. Research, Society and Development, 10(4), e34410414249. 10.33448/rsd-v10i4.14249.

Thomas-Porch, C., Li, J., Zanata, F., Martin, E. C., Pashos, N., Genemaras, K., & Gimble, J. M. (2018). Comparative proteomic analyses of human adipose extracellular matrices decellularized using alternative procedures. Journal of Biomedical Materials Research Part A, 106(9), 2481-2493.

Villiers, J.A., Houreld, N.N., & Abrahamse, H. (2011). Influence of low intensity laser irradiation on isolated human adipose derived stem cells over 72 hours and their differentiation potential into smooth muscle cells using retinoic acid. Stem Cell Reviews and Reports, 7(4), 869-882.

Yang, Q., Peng, J., Guo, Q., Huang, J., Zhang, L., Yao, J., & Lu S. (2008). A cartilage ECM-derived 3-D porous acellular matrix scaffold for in vivo cartilage tissue engineering with PKH26-labeled chondrogenic bone marrow-derived mesenchymal stem cells. Biomaterials, 29(15), 2 378-2387.

Yun, S. I., Jeon, Y. R., Lee, W .J., Lee, J. W., Rah, D. K., Tark, K. C., & Lew, D. H. (2012). Effect of human adipose derived stem cells on scar formation and remodeling in a pig model: a pilot study. Dermatologic Surgery, 38(10), 1678-1688. 10.1111/j.1524-4725.2012.02495.x.

Zuk, P.A., Zhu, M., Mizuno, H., Huang, J., Futrell, W., Katz, A. J., Benhaim, P., Lorenz, P., & Hedrick, M. H. (2001). Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue engineering, 7(2), 211-228.

Zwingenberger, S., Yao, Z., Jacobi, A., Vater, C., Valladares, R. D., & Stiehler, M. (2013). Stem cell attraction via SDF-1α expressing fat tissue grafts. Journal of Biomedical Materials Research Part A, 101(7): 2067-2074.

Published

14/07/2021

How to Cite

LISBOA, D. G. .; FONSECA, S. C. da .; STROPARO, J. L. de O.; MENDES, R. A. .; VIEIRA, E. D. .; CAVALARI, V. C. .; LEÃO NETO, R. da R. .; GABARDO , M. C. L. .; DELIBERADOR, T. M. .; FRANCO, C. R. C. .; LEÃO, M. P. .; ZIELAK, J. C. . Characterization and viability of the stromal vascular fraction from the Bichat fat ball associated with platelets-poor plasma - an option for aesthetic treatments. Research, Society and Development, [S. l.], v. 10, n. 8, p. e37010817341, 2021. DOI: 10.33448/rsd-v10i8.17341. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/17341. Acesso em: 3 jan. 2025.

Issue

Section

Health Sciences