Trend analysis in standardized precipitation index in Recife–PE

Authors

DOI:

https://doi.org/10.33448/rsd-v10i8.17458

Keywords:

Mann-Kendall; Trend Analysis; Standardized precipitation index.

Abstract

The hydrological cycle, affected by climate change caused by the process of development and industrialization, has received great attention from the scientific community around the world, and with this, many studies have been carried out to show that changes in precipitation are becoming evident on a scale global. In addition, extreme events such as prolonged droughts, floods and landslides have caused social and environmental impacts in large urban areas, with flooding in highly waterproof surfaces being the most frequent ones, due to insufficient infrastructure in drainage systems. Therefore, this work aimed to analyze the trend in time series of the Standardized Precipitation Index (SPI) for the time scales of 1, 3, 6, 12, 24 and 48 months, using the Mann-Kendall test at the level 5% significance level. For this purpose, monthly precipitation data from the conventional meteorological station Recife (Curado), located in the state of Pernambuco, Brazil, between the period 1962 to 2019 were used. The results showed that for the time scales of 1 and 3 months there is no significant temporal trend, while significant negative trends were obtained for the other scales, which indicated an increase in drought severity. In relation to the frequencies of occurrences, an increase in the occurrence of dry periods is observed for long-term conditions (SPI-12, SPI-24 and SPI-48) and for wet periods an increase was observed only in the moderately humid category.

References

Agência Nacional de Águas (Brasil). Conjuntura dos recursos hídricos no Brasil: regiões hidrográficas brasileiras – Edição Especial. ANA, 2015.

Araújo Júnior, L. M. D., Souza Filho, F. D. A., Silveira, C. D. S., Dias, T. A., & Doss-Gollin, J. (2014). Análise dos eventos de seca no nordeste setentrional brasileiro com base no índice de precipitação normalizada. XII Simpósio de Recursos Hídricos do Nordeste.

Ashraf, M., & Routray, J. K. (2015). Spatio-temporal characteristics of precipitation and drought in Balochistan Province, Pakistan. Natural Hazards, 77(1), 229-254.

Azua, S. (2015). Analysis of Rainfall Variability and the Trends of Wet and Dry Periods in Makurdi and Environs Using Standardised Precipitation Index. In 6th International Conference and Annual General Meeting Meeting of Nigeria Association of Hydrological Sciences (NAHS)”ABU (pp. 1-11).

Birsan, M. V., Dumitrescu, A., Micu, D. M., & Cheval, S. (2014). Changes in annual temperature extremes in the Carpathians since AD 1961. Natural Hazards, 74(3), 1899-1910.

Buttafuoco, G., Caloiero, T., & Coscarelli, R. (2015). Analyses of drought events in Calabria (southern Italy) using standardized precipitation index. Water Resources Management, 29(2), 557-573.

Caloiero, T. (2017). Drought analysis in New Zealand using the standardized precipitation index. Environmental Earth Sciences, 76(16), 1-13.

Chadwick, R., Good, P., Martin, G., & Rowell, D. P. (2016). Large rainfall changes consistently projected over substantial areas of tropical land. Nature Climate Change, 6(2), 177-181.

Da Silva, D. F., Lima, M. J. S., Souza Neto, P. F., Gomes, H. B., Silva, F. D. S., Almeida, H. R. R. C., & Pereira, M. P. S. (2020). Caracterização de eventos extremos e de suas causas climáticas com base no Índice Padronizado de Precipitação Para o Leste do Nordeste. Revista Brasileira de Geografia Física, 13(02), 449-464.

De Alcântara, L. R. P., da Silva, M. E. R., dos Santos Neto, S. M., Lafayette, F. B., Coutinho, A. P., Montenegro, S. M. G. L., & Antonino, A. C. D. (2020). Mudanças climáticas e tendências do regime pluviométrico do Recife. Research, Society and Development, 9(3), e178932583-e178932583.

Debortoli, N. S., Camarinha, P. I. M., Marengo, J. A., & Rodrigues, R. R. (2017). An index of Brazil’s vulnerability to expected increases in natural flash flooding and landslide disasters in the context of climate change. Natural hazards, 86(2), 557-582.

De Sousa Oliveira, G. C., da Silva Junior, J. P., Nóbrega, R. S., & Girão, O. (2011). Uma Abordagem da Geografia do Clima Sobre os Eventos Extremos de Precipitação em Recife–PE (An Climate Geography Approach on Extreme Precipitation Events in Recife–PE). Revista Brasileira de Geografia Física, 4(2), 238-251.

Dos Santos, S. R. Q., Braga, C. C., Santos, A. P. P., Brito, J. I. B., & Campos, T. L. O. B. (2014). Classificação de eventos extremos de precipitação em múltiplas escalas de tempo em Belém-PA: Utilizando o índice de precipitação normalizada. Revista Brasileira de Geografia Física, 7(4), 628-635.

Dos Santos, S. R. Q. D., Braga, C. C., Sansigolo, C. A., & Santos, A. P. P. D. (2017). Determinação de regiões homogêneas do índice de precipitação normalizada (SPI) na Amazônia Oriental. Revista Brasileira de Meteorologia, 32, 111-122.

Du, J., Fang, J., Xu, W., & Shi, P. (2013). Analysis of dry/wet conditions using the standardized precipitation index and its potential usefulness for drought/flood monitoring in Hunan Province, China. Stochastic environmental research and risk assessment, 27(2), 377-387.

Giannini, A., Saravanan, R., & Chang, P. (2004). The preconditioning role of tropical Atlantic variability in the development of the ENSO teleconnection: Implications for the prediction of Nordeste rainfall. Climate Dynamics, 22(8), 839-855.

Green, T. R., Taniguchi, M., Kooi, H., Gurdak, J. J., Allen, D. M., Hiscock, K. M., & Aureli, A. (2011). Beneath the surface of global change: Impacts of climate change on groundwater. Journal of Hydrology, 405(3-4), 532-560.

Hayes, M., Svoboda, M., Wall, N., & Widhalm, M. (2011). The Lincoln declaration on drought indices: universal meteorological drought index recommended. Bulletin of the American Meteorological Society, 92(4), 485-488.

Hlaváčová, M., Klem, K., Rapantová, B., Novotná, K., Urban, O., Hlavinka, P., & Trnka, M. (2018). Interactive effects of high temperature and drought stress during stem elongation, anthesis and early grain filling on the yield formation and photosynthesis of winter wheat. Field crops research, 221, 182-195.

Kalantari, Z., Ferreira, C. S. S., Keesstra, S., & Destouni, G. (2018). Nature-based solutions for flood-drought risk mitigation in vulnerable urbanizing parts of East-Africa. Current Opinion in Environmental Science & Health, 5, 73-78.

Kendall, M. G. (1948). Rank correlation methods. Griffin.

Koudahe, K., Kayode, A. J., Samson, A. O., Adebola, A. A., & Djaman, K. (2017). Trend analysis in standardized precipitation index and standardized anomaly index in the context of climate change in Southern Togo. Atmospheric and Climate Sciences, 7(04), 401.

El Niño e La Niña - CPTEC/INPE. (2021). Inpe.br. http://enos.cptec.inpe.br/

Lake, P. S. (2003). Ecological effects of perturbation by drought in flowing waters. Freshwater biology, 48(7), 1161-1172.

Lloyd‐Hughes, B., & Saunders, M. A. (2002). A drought climatology for Europe. International Journal of Climatology: A Journal of the Royal Meteorological Society, 22(13), 1571-1592.

Mann, H. B. (1945). Nonparametric tests against trend. Econometrica: Journal of the econometric society, 245-259.

Marengo, J. A., Torres, R. R., & Alves, L. M. (2017). Drought in Northeast Brazil—past, present, and future. Theoretical and Applied Climatology, 129(3), 1189-1200.

Marengo, J. A., Alves, LM, Alvala, R., Cunha, AP, Brito, S., & Moraes, OL (2017). Características climáticas da seca de 2010-2016 na região semiárida do Nordeste do Brasil. Anais da Academia Brasileira de Ciências, 90, 1973-1985.

Marengo, J. A., & Bernasconi, M. (2015). Regional differences in aridity/drought conditions over Northeast Brazil: present state and future projections. Climatic Change, 129(1), 103-115.

McKee, T. B., Doesken, N. J., & Kleist, J. (1993, January). The relationship of drought frequency and duration to time scales. In Proceedings of the 8th Conference on Applied Climatology (Vol. 17, No. 22, pp. 179-183).

Nascimento, F. C. A., Braga, C. C., Araújo, F. R. C. D. 2017. Análise Estatística dos Eventos Secos e Chuvosos de Precipitação do Estado do Maranhão. Revista Brasileira de Meteorologia, 32, 375-386.

Nashwan, M. S., & Shahid, S. (2019). Spatial distribution of unidirectional trends in climate and weather extremes in Nile river basin. Theoretical and applied climatology, 137(1), 1181-1199.

Palmer, W. C. (1968). Keeping track of crop moisture conditions, nationwide: the new crop moisture index. Weatherwise, 21, 156–161.

Patz, J. A., & Kovats, R. S. (2002). Hotspots in climate change and human health. Bmj, 325(7372), 1094-1098.

R CORE TEAM (2020). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL: http://www.R-project.org/.

Robertson, A. W., Kirshner, S., & Smyth, P. (2004). Downscaling of daily rainfall occurrence over northeast Brazil using a hidden Markov model. Journal of climate, 17(22), 4407-4424.

Shukla, S., & Wood, A. W. (2008). Use of a standardized runoff index for characterizing hydrologic drought. Geophysical research letters, 35(2).

Stagge, J. H., Tallaksen, L. M., Gudmundsson, L., Van Loon, A. F., & Stahl, K. (2015). Candidate distributions for climatological drought indices (SPI and SPEI). International Journal of Climatology, 35(13), 4027-4040.

Svensson, C., Hannaford, J., & Prosdocimi, I. (2017). Statistical distributions for monthly aggregations of precipitation and streamflow in drought indicator applications. Water Resources Research, 53(2), 999-1018.

Svoboda, M., Hayes, M., & Wood, D. (2012). Standardized precipitation index user guide. World Meteorological Organization Geneva, Switzerland, 900.

Vicente-Serrano, S. M., Beguería, S., & López-Moreno, J. I. (2010). A multiscalar drought index sensitive to global warming: the standardized precipitation evapotranspiration index. Journal of climate, 23(7), 1696-1718.

Zanella, M. E., & de Oliveira Moura, M. (2013). O clima das cidades do Nordeste brasileiro: contribuições no planejamento e gestão urbana. Revista da ANPEGE, 9(11), 75-89.

Published

17/07/2021

How to Cite

BARROS, V. da S.; GOMES, V. K. I. .; SILVA JÚNIOR, I. B. da .; SILVA, A. S. V. da .; SILVA, A. S. A. da .; BEJAN, L. B. .; STOSIC , T. . Trend analysis in standardized precipitation index in Recife–PE. Research, Society and Development, [S. l.], v. 10, n. 8, p. e52310817458, 2021. DOI: 10.33448/rsd-v10i8.17458. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/17458. Acesso em: 15 jan. 2025.

Issue

Section

Exact and Earth Sciences