In vitro biocompatibility analysis of two types of titanium surfaces treated by Electric Discharge Machining (EDM)

Authors

DOI:

https://doi.org/10.33448/rsd-v10i8.17474

Keywords:

Regenerative medicine; Titanium; EDM; Hydroxyapatite; MC3T3-E1.

Abstract

The aim of the present work was to assess the biological viability of two titanium surfaces treated by electric discharge machining (EDM) using water or hydroxyapatite as modifying agents and compare them to a machined titanium surface without modifying agent as a control. The in vitro MTT, total protein, alkaline phosphatase and alizarin red assays and scanning electron microscopy were applied to analyze pre-osteoblastic MC3T3-E1 cells after 7, 14 and 21 days of cell culture on the titanium surfaces. The results showed the presence of cellular activity in all surfaces and the formation of bone matrix, with no discrepancy among the groups. All tested surfaces were capable of inducing bone formation. In the topographic analysis of the surface, EDM failed to modify the surface of the discs homogeneously. Thus, EDM is a low-cost, biocompatible technique that favors osseointegration, but which still needs to be improved.

References

Anselme, K., Ponche, A., & Bigerelle, M. (2010) Relative influence of surface topography and surface chemistry on cell response to bone implant materials. Part 2: biological aspects. Proc Inst Mech Eng H 224(12):1487-507. 10.1243/09544119JEIM901.

Chen, W. C., Chen, Y. S., Ho, C. L., Lin, Y., & Kuo, H. N. (2014) Interaction of progenitor bone cells with different surface modifications of titanium implant. Mater Sci Eng C Mater Biol Appl 37: 305-13. 10.1016/j.msec.2014.01.022.

Davies, J. E. (2007). Bone bonding at natural and biomaterial surfaces. Biomaterials 28: 5058–5067. 10.1016/j.biomaterials.2007.07.049.

Ferreira, L. B., Bradaschia-Correa, V., Moreira, M. M., Marques, N. D., & Arana-Chavez, V. E. (2015) Evaluation of bone repair of critical size defects treated with simvastatin-loaded poly (lactic-co-glycolic acid) microspheres in rat calvaria. J Biomater Appl 29(7):965-76. 10.1177/0885328214550897.

Galli, C., Guizzardi, S., Passeri, G., Martini, D., Tinti, A., Mauro, G., & Macaluso, G. M. (2005) Comparison of Human Mandibular Osteoblasts Grown on Two Comercially Availabe Titanium Implant Surfaces. J Periodontol 76(3): 364-72. 10.1902/jop.2005.76.3.364.

Hansson, H. A., Albrektsson, T., & Branemark, P. I. (1983) Structural aspects of the interface between tissue and titanium implants. J Prosthet Dent 50(1):108-113. 10.1016/0022-3913(83)90175-0.

Harcuba, P., Bačáková, L., Stráský, J., Bačáková, M., Novotná, K., & Janeček, M. J. Surface treatment by electric discharge machining of Ti-6Al-4V alloy for potential application in orthopaedics. Mech Behav Biomed Mater. 96-105. 10.1016/j.jmbbm.2011.07.001.

Hsu, W. H., & Chien, W. T. (2016) Effect of Electrical Discharge Machining on Stress Concentration in Titanium Alloy Holes. Materials (Basel). 24,9(12). 10.3390/ma9120957.

Jeffcoat, M. K., McGlumphy, E. A., Reddy, M. S., Geurs, N. C., & Proskin, H. M. (2003) A comparison of hydroxyapatite (HA) -coated threaded, HA-coated cylindric, and titanium threaded endosseous dental implants. Int J Oral Maxillofac Implants 18(3):406–10.

Kuo, C., Nien, Y., Chiang, A., & Hirata, A. (2021) Surface Modification Using Assisting Electrodes in Wire Electrical Discharge Machining for Silicon Wafer Preparation. Materials, 14, 1355. 10.3390/ma14061355.

Lai, M., Hermann, C. D., Cheng, A., Olivares-Navarrete, R., Gittens, R. A., & Bird, M. M. Role of α2 β1 integrins in mediating cell shape on microextured titanium surfaces. J Biomed Mater Res A 103(2):564-73. 10.1002/jbm.a.35185.

Lumetti, S., Manfredi, E., Ferraris, S., Spriano, S., Passeri, G., Ghiacci, G., Macaluso, G., & Galli, C. (2016) The response of osteoblastic MC3T3-E1 cells to micro- and nano- textured, hydrophilic, and bioactive titanium surfaces. J Mater Sci: Mater Med 27:68. 10.1007/s10856-016-5678-5.

Matos, A. O., Ricomini-Filho, A. P., Beline, T., Ogawa, E. S., Costa-Oliveira, B. E., de Almeida, A. B., Nociti Junior, F. H., Rangel, E. C., da Cruz, N. C., Sukotjo, C., Mathew, M. T., & Barão, V. A. (2017) Three-species biofilm model onto plasma-treated titanium implant surface. Colloids Surf B Biointerfaces 1,152:354-366. 10.1016/j.colsurfb.2017.01.035.

Moura, C. G., Souza, M. A., Kohal, R. J., Dechichi, P., Zanetta-Barbosa, D., Jimbo, R., Teixeira, C. C., Teixeira, H. S., Tovar, N., & Coelho, P. G. (2013) Evaluation of osteogenic cell culture and osteogenic/peripheral blood mononuclear human cell co-culture on modified titanium surfaces. Biomed Mater 8(3):035002. 10.1088/1748-6041/8/3/035002.

Osman, R. B., & Swain, M. V. (2015). A Critical Review of Dental Implant Materials with an Emphasis on Titanium versus Zirconia. Materials (Basel, Switzerland), 8(3), 932–958. 10.3390/ma8030932.

Pramanik, A., Basak, A.K., Littlefair, G., Debnath, S., Prakash, C., Singh, M. A., Marla, D., & Singh, R. K. Methods and variables in Electrical discharge machining of titanium alloy - A review. Heliyon. 2020 Dec 14,6(12):e05554. 10.1016/j.heliyon.2020.e05554.

Rosa, M. B., Albrektsson, T., Francischone, C. E., Schwartz Filho, H. O., & Wennerberg, A. (2012) The influence of surface treatment on the implant roughness pattern. J Appl Oral Sci 20(5):550-5. 10.1590/s1678-77572012000500010.

Schwartz, Z., Olivares-Navarrete, R., Wieland, M., Cochran, D. L., & Boyan, B. D. (2009) Mechanisms regulating increased production of osteoprotegerin by osteoblasts cultured on microstructured titanium surface. Biomaterials 30(20):3390-6. 10.1016/j.biomaterials.2009.03.047.

Shi, Q., Qian, Z., Liu, D., & Liu, H. (2017) Surface Modification of Dental Titanium Implant by Layer-by-Layer Electrostatic Self-Assembly. Front Physiol 7,8: 574. 10.3389/fphys.2017.00574.

Subramani, K., Pandruvada, S. N., Puleo, D. A., Hartsfield Jr., J. K., & Huja, S. S. (2016) In vitro evaluation of osteoblast responses to carbon nanotube-coated titanium surfaces. Progress in Orthodontics 17(1):23. 10.1186/s40510-016-0136-y.

Tamayo, J. A., Riascos, M., Vargas, C. A., & Baena, L. M. (2021). Additive manufacturing of Ti6Al4V alloy via electron beam melting for the development of implants for the biomedical industry. Heliyon, 7(5), e06892. 10.1016/j.heliyon.2021.e06892.

Zambuzzi, W.F., Bonfante, E. A., Jimbo, R., Hayashi, M., Anderson, M., Alves, G., Takamori, E. R., Beltrão, P. J., Coelho, P. G., & Granjeiro, J. M. (2014) Nanometer Scale Titanium Surface Texturing Are Detected by Signaling Pathways Involving Transient FAK and Src Activations. PLoS One 9(7): e95662. 10.1371/journal.pone.0095662.

Zhu, Z., Guo, D., Xu, J., Lin, J., Lei, J., Xu, B., Wu, X., & Wang, X. (2020) Processing Characteristics of Micro Electrical Discharge Machining for Surface Modification of TiNi Shape Memory Alloys Using a TiC Powder Dielectric. Micromachines (Basel).20 11(11):1018. 10.3390/mi11111018.

Downloads

Published

15/07/2021

How to Cite

GARCIA, R. F. .; LIMA, I. L. de .; CASTRO, P. S. de .; GOULART, L. R. .; ALONSO-GOULART, V. .; ROCHA, F. S.; RASLAN, A. A. .; FILICE , L. de S. C. . In vitro biocompatibility analysis of two types of titanium surfaces treated by Electric Discharge Machining (EDM) . Research, Society and Development, [S. l.], v. 10, n. 8, p. e44710817474, 2021. DOI: 10.33448/rsd-v10i8.17474. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/17474. Acesso em: 23 nov. 2024.

Issue

Section

Health Sciences