Geotechnology and climate change in altitude vegetation
DOI:
https://doi.org/10.33448/rsd-v10i8.17657Keywords:
Grasslands; Scientific publications; Climate change; Spatial-temporal variations; Altitude; Vegetation distribution; Geotechnologies.Abstract
Bibliometric analysis is considered a quick and efficient study to assess research trends and academic networks in different research disciplines. The aim of this study was to perform a bibliometric analysis and present an overview of research trends on the spatial and temporal variability of highland vegetation in response to climate change with the aid of geotechnologies. To this end, a bibliographic search was carried out using the Web of Science database on December 11, 2020, to gather academic publications on spatiotemporal changes in altitude vegetation in response to climate change, between the years of 1945 and 2020. A total of 54 publications with aligned abstracts were obtained. All these documents were read and the number of 27 publications that met all the criteria related to the objective of this analysis was reached. The analysis showed that the number of publications related to the topic of this research is still very small and restricted to a few countries and specific vegetation types in certain alpine areas.
References
Bluden, J. & Arndt, D. S. (2018). State of the Climate in 2017. Bull. Am. Meteorol. Soc., 99, p. 332.
Bai, Y. et al. (2020). Climate warming benefits alpine vegetation growth in Three-River Headwater Region, China. Science of the Total Environment, 742, p. 140574.
Baier-Fuentes, H. et al. (2019). International entrepreneurship: A bibliometric overview. Int. Entrep. Manag. J., 15, p. 385-429.
Boelman, N. T. et al. (2003). Response of NDVI biomass and ecosystem gas exchange to long-term warming and fertilization in wet sedge tundra. Oecologia, 135, p. 414-421.
Bergier, I. (2013). Effects of highland land-use over lowlandsof the Brazilian Pantanal. Sci Total Environ, 463-464, p. 1060−1066.
Bravo, J. M. et al. (2014). Impact of projected climate change on hydrologicregime of the Upper Paraguay River basin. Clim Change, 127, p. 27-41.
CANVA. (2020). Disponível em: https://www.canva.com/pt_br/. Acessado em: 16 de setembro de 2020.
Chaves, J. R. (2020). Sintaxe Espacial e Mobilidade na Paisagem Urbana como ferramenta para gestão. Dissertação de Mestrado. Fundação Universidade de Mato Grosso do Sul, Campo Grande. 2020. 125p.
Chiu, W. T & Ho, Y. S. (2005). Bibliometric analysis of homeopathy research during the period of 1991 to 2003. Scientometrics, 63, p. 3–23.
Correa-Díaz, A. et al. (2020). Long-Term Wood Micro-Density Variation in Alpine Forests at Central México and Their Spatial Links with Remotely Sensed Information. Forests, 11, p. 452.
Dong, D. & Chen, M. L. (2015). Publication trends and co-citation mapping of translation studies between 2000 and 2015. Scientometrics, v. 105, p. 1111-1128.
Engels, A. (2018). Understanding how China is championing climate change mitigation. PALGRAVE COMMUNICATIONS, 4 (101), p. 1-6.
Gao, Q. et al. (2009). Dynamics of alpine grassland NPP and its response to climate change in Northern Tibet. Climate Change, 97, p. 515-528.
Haunschild, R.; Bornmann, L.; Marx, W. (2016). Climate Change Research in View of Bibliometrics. PLoS ONE, 11 (7), p. e0160393.
Huete, A. et al. (2002). Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sensing of Environment, 83, p. 195-213.
Huang, N. et al. (2018). No upward shift of alpine grassland distribution on the Qinghai-Tibetan Plateau despite rapid climate warming from 2000 to 2014. Science of the Total Environment, 625, p. 1361-1368.
Huang, S. (2020). A commentary review on the use of normalized difference vegetation index (NDVI) in the era of popular remote sensing. J. For. Res., 32, p. 1-6.
Herrera-Franco, G.; et al. (2020). Research Trends in Geotourism: A Bibliometric Analysis Using the Scopus Database. Geosciences, 10 (379), p. 1-29.
He, Z. B. et al. (2015). Assessing temperature sensitivity of subalpine shrub phenology in semi-arid mountain regions of China. Agricultural and Forest Meteorology, 213, p. 42-52.
Hirsch, J. E. (2005). An index to quantify an individual's scientific research output. Proceedings of the National academy of Sciences, 102 (46), p. 16569-16572.
Ioris, A. A. R.; Irigaray, C. T.; Girard, P. (2014). Institutionalresponses to climate change: opportunities and barriersfor adaptation in the Pantanal and the Upper ParaguayRiver Basin. Clim Change, 127, p. 139-151.
Fang, J. et al. (2001). Inter-annual variability in net primary production and precipitation. Science, 293, p. 1723a.
Junk, W. J. et al. (2006). Biodiversity and its conservation in the Pantanal of Mato Grosso, Brazil. Aquat. Sci., 68, p. 278–309.
Knapp, A. K. & Smith, M. D. (2001). Variation among biomes in temporal dynamics of aboveground primary production. Science, 291, p. 481-484.
Li, A. H. F. (2016). Hopes of Limiting Global Warming? China and the Paris Agreement on Climate Change. China Perspectives, 1, p. 49-54.
Li, C. B. et al. (2014). Regional vegetation dynamics and its response to climate change-a case study in the Tao River Basin in Northwestern China. Environmental Research Letters, 9 (12), p. 12.
Pepin, N. et al. (2015). Elevation-dependent warming in mountain regions of the world. Nat. Clim. Chang., 5, p. 424–430.
Ma, X. et al. (2019). Sensitivity of Vegetation on Alpine and Subalpine Timberline in Qinling Mountains to Temperature Change. Forests, 10, p. 1105.
Melillo, J. M. et al. (1993). Global climate change and terrestrial net primary production. Nature, 363, p. 234-240.
Nemani, R. R. (2003). Climate-driven increases in global terrestrial net primary production from 1982 to 1999. Science, 300, p. 1560-1563.
Tao, J. et al.(2018). Elevation-dependent effects of climate change on vegetation greenness in the high mountains of southwest China during 1982–2013. Int. J. Climatol., 38, p. 2029–2038.
Tan, J. et al. (2014). A bibliometric analysis of research on proteomics in Science Citation Index Expanded. Scientometrics., 98, p. 1473–1490.
Tai, T. C. & James, P. W. R. (2018). Enhancing Climate Change Research With Open Science. Front. Environ. Sci., 6 (115), p. 1-5.
THE ENDNOTE TEAM. (2013). EndNote. Clarivate. Version X9. Available from https://endnote.com/
Van Eck, N. J. & Waltman, L. (2010). VOSViewer: Visualizing Scientific Landscapes [Software]. Available from https://www.vosviewer.com
Wang, X. et al. (2014). Alpine Cold Vegetation Response to Climate Change in the Western Nyainqentanglha Range in 1972–2009. The Scientific World Journal, 2014, p. 1-9.
Wang, L. et al. (2019). Bibliometric Analysis of Remote Sensing Research Trend in Crop Growth Monitoring: A Case Study in China. Remote Sens., 11, p. 809.
Walker, D. A. et al. (2005). The Circumpolar Arctic vegetation map. Journal of Vegetation Science, 5 (16), p. 267-282.
Santin-Janin, H. et al. (2009). Assessing the performance of NDVI as a proxy for plant biomassusing non-linear models: a case study on the Kerguelenarchipelago. Polar Biol., 32, p. 861-871.
Shen, M. G. et al. (2015). Plant phenological responses to climate change on the Tibetan Plateau: research status and challenges. National Science Review, 2 (4), p. 454-467.
Sun, J. et al. (2006). Impact of climate change in the Hengduan Mountains of northwestern Yunnan, P. R. China: Vegetation distribution change in foretime and future. Proc. of SPIE, 6296, p.62960X-1.
Pouliot, D. et al. (2009). Trends in vegetation NDVI from 1 km AVHRR data over Canada for the period 1985–2006. International Journal of Remote Sensing, 30 (1), p. 149-168.
Jeong, S. J. et al. (2011). Phenology shifts at start vs. end of growing season in temperate vegetation over the Northern Hemisphere for the period 1982–2008. Glob. Chang. Biol. 17, p. 2385–2399.
Xi, Z. (2020). China’ s historical evolution of environmental protection along with the forty years’ reform and opening-up. Environmental Science and Ecotechnology, 1, p. 100001.
Zhang, R. et al. (2019a). Grassland vegetation phenological variations and responses to climate change in the Xinjiang region, China. Quaternary International, 513, p. 56–65.
Zhang, L. et al. (2016). A review of ecosystem services: a bibliometric analysis based on web of science. Acta Ecologica Sinica., 36, p. 5967–5977.
Zhang, X. et al. (2019b). Bibliometric analysis of highly cited articles on ecosystem services. PLoS ONE, 14 (2), p. e0210707.
Zhang, J. et al. (2016). Comparing keywords plus of WOS and author key-words: A case study of patient adherence research. J Assoc Inf Sci Technol., 67, p. 967–972.
Zhang, J. et al. (2007). Evaluation of Grassland Dynamics in the Northern-Tibet Plateau of China Using Remote Sensing and Climate Data. Sensors, 7, p. 3312-3328.
Zhou, L. H. et al. (2009). Response of Vegetation Coverage on Climate Change in Arid Mountain of Northwest China. In: Ieee International Geoscience and Remote Sensing Symposium, Vols 1-5. New York, Ieee: 1871.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Dhonatan Diego Pessi; Marco Antonio Diodato; Normandes Matos da Silva; Alfredo Marcelo Grigio; Camila Leonardo Mioto; Vinícius de Oliveira Ribeiro; Antonio Conceição Paranhos Filho
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.