Proteinogram of milk from cows with subclinical mastitis as a function of the score of somatic cells




Protein; Somatic cell cout; Subclinical mastitis.


The aim of the present study was to investigate the influence of increased SCC on the expression of milk proteins through the use of analyzes microfluid electrophoresis (lab-on-a-chip). Fifty samples of cow's milk  from two properties located in State of Goiás were analyzed. Samples were analyzed for somatic cell counts and lab-on-a-chip microfluidic electrophoresis. For the correlation test between the protein profile and the SCC the samples were stratified into five groups of Scores of Somatic Cell. A completely randomized design with five treatments was used, data were analyzed using descriptive statistics and graphical representations. There was a significant increase in the concentration of the protein component when compaired SSC 1 and 3, 1 to 4 and 1 and 5. It was also possible to observe a statistical difference in the results of the Lactose component when comparing SSC 1 and 3 and 3 and 4. In the descriptive evaluation of the variable "Concentration" of the milk proteins it was possible to observe differences in the concentration values as a function of SSC. It was possible to observe statistical difference for the results obtained for α-LA, when compared to ECS 1,2 and 3 and ECS 5; For IgG, samples from SSC 4 and 5 showed different concentrations of samples from SSC 1,2 and 3; and the LF protein, presented different results between the samples of SSC 1 and 5. We concluded that high abundance whey proteins have their concentration decreased with the occurence of the mastitis; Defense proteins such as Lactoferrin, Lactoperoxidase, IgG and IgM have their concentration increased when comparing milk samples from cows with subclinical mastitis and milk samples from healthy cows; Lactoferrin and IgG proteins are potential targets for identifying cows with subclinical mastitis in milk samples and may be considered biomarkers.


Addis, M.F., Pisanu, S., Marogna, G., Cubeddu, T., Pagnozzi, D., Cacciott& o, C., Campesi, F., Schianchi, G., Rocca, S., & Uzzau, S. (2013). Production and release of antimicrobial and imune defense proteins by mammary ephitelial celles following Streptococcus uberis infection of sheep. Infet Immun., 81 (9): 3182-97.

Akerstedt, M., Forsbäck, L., Larsen, T., & Svennersten-Sjaunja, K. (2011). Natural variation in biomarkers indicating mastitis in healthy cows. J Dairy Res, 78 (1): 88-96.

Anema, S. G. (2009). The use of ‘’Lab-on-a-chip’’microfluidic SDS electrophoresis technology for the separation and quantification of milk proteins. Int Dairy J, 19: 198– 204.

Bislev, S. L., Deutsch, E. W., Sun, Z., Farrah, T., Aebersold, R., Moritz, R. L., Bendixen, E., & Codrea, M. C. (2012). A bovine peptide atlas of milk and mammary gland proteomes. Proteomics, 12 (18): 2895-9.

Brownlow, S., Morais Cabral, J. H., Cooper, R., & Flower, D. R. (1997). Bovine β-lactoglobulin at 1.8 A resolution - still an enigmatic lipocalin. Structure, 5: 481-95.

Bueno, V. F. F., Mesquita, A. J., Soares, N. E., Liveira, A. N., Oliveira, J. P., Neves, R. B., Mansur, J. R. G., & Thomaz, L. W. (2005). Contagem celular somática: relação com a composição centesimal do leite e período do ano no Estado de Goiás. Ciência Rural, 35 (4): 848-54.

Campanella, L., Martini, E., Pintore, M., & Tomassetti, M. (2009). Determination of lactoferrina and immunoglobulin g in animal milks by new immunosensors. Sensors (Basel), 9 (3): 2202-21.

Chopra, A., Gupta, I. D., Verma, A., Chakravarty, A. K., & Vohra, V. (2015). Lactoferrin gene promoter variants and their association with clinical and subclinical mastitis in indigenous and crossbred cattle. Pol J Vet Sci., 18(3):465-71.

Che, H.X., Tian, B., Bai, L.N., Cheng, L.M., Liu, L.L., Zhang, X.N., Jiang, Z.M., & Xu, X.X. (2015). Development of a test strip for rapid detection of Lactoperoxidase in raw milk. J Zhejiang Univ Sci B., 16(8):672-9.

Costa, F. F., Brito, M. A. V. P., Furtado, M. A. M, Martins, M. F., Oliveira, M. A. L., Barra, P. M. C., Garrido, L. A., & Santos, A. S. O. (2014). Microfluidic chip electrophoresis investigation of major milk proteins: study of buffer effects and quantitative approaching. Anal Methods, 6: 1666-73.

Fernandes, A. M., Oliveira, C. A. F., & Lima, C. G.(2007). Effects os fomatic cell counts in milk on physical and chemical characteristics of yoghurt. Int Daory J. 17: 111-5

Gigante, M. I., & Costa, M. R. (2008). Influência das células somáticas nas propriedades tecnológicas do leite e derivados. In: Barbosa SBP, Batista AMV, Monardes H. III Congresso Brasileiro de Qualidade do Leite. Recife: CCS Gráfica e Editora. 2008, 1: 161-74.

Guerrero, A., Dallas, D. C., Contreras, S., Bhandari, A., Cánovas, A., Islas-Trejo, A., Medrano, J. F., Parker, E. A., Wang, M., Hettinga, K., Chee, S., German, J. B., Barile, D., & Lebrilla, C. B. (2015). Peptidomic analysis of healthy and subclinically mastitic bovine milk. Int Dairy J. 46:46-52.

Harmon, R.J. (1994). Symposium: Mastitis and genetic evaluation for somatic cell count—physiology of mastitis and factors affecting somatic cell counts. J Dairy Sci,77 (7): 2103–12.

Harmon, R. J., Schanbacher, F. . L., Ferguson, L. C., & Smith, K. L. (1976). Changes in lactoferrin, immunoglobulin G, bovine serum albumin, and alpha-lactalbumin during acute experimental and natural coliform mastitis in cows. Infect Immun., 13: 533-42.

Hisaeda, K., Koshiishi, T., Watanabe, M., Miyake, H., Yoshimura, Y., & Isobe, N. (2016). Change in viable bacterial count during preservation of milk derived from dairy cows with subclinical mastitis and its relationship with antimicrobial components in milk. J Vet Med Sci.,78 (8): 1245-50.

Hogarth, C.J., Fitzpatrick, J.L., Nolan, A.M., Young, F.J., Pitt, A., & Eckersall, P.D. (2004). Differential protein composition of bovine whey: a comparison of whey from healthy animals and from those with clinical mastitis. Proteomics, (7):2094-100.

Huang, J., Wang, H., Wang, C., Li, J., Li, Q., Hou, M., & Zhong, J. (2010). Single nucleotide polymorphisms, haplotypes and combined genotypes of lactoferrina gene and their associations with mastitis in Chinese Holstein cattle. Mol Biol Rep., 37 (1): 477-83.

Hurley, W. L., & Rejman, J. J. (1993). Bovine lactoferrina in involuting mammary tissue. Cell Biol Int., 17 (3): 283-9.

Hurley, W.L., Theil, P.K. (2011) Perspectives on immunoglobulins in colostrum and milk. Nutrients., 3 (4): 442-74.

Kawai, K., Korematsu, K., Akiyama, K., Okita, M., Yoshimura, Y., & Isobe, N. (2015). Dynamics of lingual antimicrobial peptide, lactoferrina concentrations and Lactoperoxidase activity in the milk of cows treated for clinical mastitis. Anim Sci J., 86 (2): 153-8.

Koskinen, M. (2009). Analytical specificity and sensitivity of a real-time polymerase chain reaction assay for identification of bovine mastitis pathogens. J Dairy Sci, 92: 952-959.

Li, X., Ding, X. Z., Wan,Y. L., Liu,Y. M., & Du, G. Z. (2014). Comparative proteomic changes of differentially expressed whey proteins in clinical mastitis and healthy yak cows. Genet Mol Res., 13(3):6593-601.

Ma, Y., Ryan, C., Barbano, D. M., Galton, D. M., Rudan, M.A., & Boor, K. J. (2000). Effects of Somatic Cell Cout on Quality and Shelf-life os pasteurized fluid milk. J Dairy Sci., 83: 264-74.

Machado, P. F., Pereira, A.R., & Sarries, G. A. (2000). Composição do leite de tanques de rebanhos brasileiros distribuídos segundo sua contagem de células somáticas. Rev Bra Zootec. 29 (6), 1883-6.

Mansor, R., Mullen, W., Albalat, A., Zerefos, P., Mischak, H., Barrett, D. C., Biggs, A., & Eckersall, P. D. (2013). A peptidomic approach to biomarker discovery for bovine mastitis. J Proteomics, 85: 89-98.

Mao, Y., Zhu, X., Xing, S., Zhang, M., Zhang, H., Wang, X., Karrow, N., Yang, L., & Yang, Z. (2015). Polymorphisms in the promoter region of the bovine lactoferrina gene influence milk somatic cell score and milk production traits in Chinese Holstein cows. Res Vet Sci., 103:107-12.

Meurer, V.M. Estudo comparativo entre as técnicas de eletroforese em gel de poliacrilamida ureia-page e lab-on-a-chip para detecção de fraude do leite de cabra pela adição de leite bovino. [Dissertação]. Juiz de Fora: Universidade Federal de Juiz de Fora, Faculdade de Farmácia, 2014.

Musayeva, K., Sederevičius, A., Želvytė, R., Monkevičienė, I., Beliavska-Aleksiejūnė, D., & Kerzienė, S. (2016). Concentration of lactoferrina and immunoglobulin G in cows' milk in relation to health status of the udder, lactation and season. Pol J Vet Sci., 19 (4): 737-44.

Ostensson, K., & Lun, S. (2008). Transfer of immunoglobulins through the mammary endothelium and epithelium and in the local lymphnode of cows during the initial response after intramammary challenge with E. coli endotoxin. Acta Vet Scand., 50: 1-10.

Pereyra, E. A., Dallard, B. E., & Calvinho, L. F. (2014). Aspects of the innate immune response to intramammary Staphylococcus aureus infections in cattle. Rev Argent Microbiol., 46 (4): 363-75.

Pyorala, S., Hovinen, M., Simojoki, H., Fitzpatrick, J., Ecksersall, P. D., & Orro, T. (2011). Acute phase proteins in milk in naturally acquired bovine mastitis caused by different pathogens. Vet Rec., 168 (20): 535.

Reinhardt, T. A., Sacco, R. E., Nonnecke, B. J., & Lippolis, J. D. (2013). Bovine milk proteome: Quantitative changes in normal milk exosomes, milk fat globule membranes and whey proteomes resulting from Staphylococcus aureus mastitis. J Proteomics, 26 (82): 141-54.

Rocha, T. L., Brownlow, S., Saddler, K. N., & Fothergill-Gilmore, L. A. (1996). New crystal form of β-lactoglobulin. J. Dairy Res, 63: 575-84.

Rodha, A. D., Pantoja, J. C. (2012). Using mastitis records and somatic cell count data. The Vet Clin North Am Food Anim Pract, 28 (2): 347-361.

Sadek, K., Saleh, E., Ayoub, M.(2017). Selective, reliable blood and milk bio-markers for diagnosing clinical and subclinical bovine mastitis. Trop Anim Health Prod., 49 (2): 431-7.

Santos, A. S. O., Meurer, V. M., Jesus, D. C., Pinto, I. S. B., Egito, A. S., Furtado, M. A. M., & Martins, M. F. (2013). Uso da tecnologia de eletroforese microfluídica "lab-on-a-chip" para análises das proteínas do leite em fraudes de leite caprino com leite bovino. Vet. e Zootec., 20 (2 Supl 1): 86-7.

Santos, A. S. D. O., Meurer, V. M., Costa, F. F., De Paiva, I. M., Fogaça, G. N., Do Egito, A. S., & Martins, M. F. (2018). Major goat milk protein: separation and characterization by “lab-on-a-chip” microfluidic electrophores. Boletim Do Centro de Pesquisa de Processamento de Alimentos, 35(2), 1-13.

Schepers, A. J., Lam. T. J. G. M., Schukken, Y. H., Wilmink, J. B. M., & Hanekamp, W. J. A. (1997) Estimation of variance components for somatic cell counts to determine thresholds for uninfected quarters. J Dairy Sci, 80 (80): 1833–40.

Smolenski, G. A., Broadhurst, M. K., Stelwagen, K., Haigh, B. J., & Wheeler, T. T. (2014). Host defence related responses in bovine milk during an experimentally induced Streptococcus uberis infection. Proteome Sci., 12 (19): 1-14.

Smolenski, G., Haines, S., Kwan, F. Y. S., Bond, J., Farr, V., Davis, S. R., Stelwagen, K., & Wheeler, T. T. (2007). Characterisation of host defence proteins in milk using a proteomic approach. J Proteome Res, 6 (1): 207-15.

Software, R. IBM Corp. Released 2010. IBM SPSS Statistics for Windows, Version 19.0. Armonk, IBM Corp.

Sola, M.C. (2015). Características do leite e sanidade da glândula mamária de bovinos curraleiro pé-duro e pantaneiro. [Tese]. Universidade Federal de Goiás, Escola de Veterinária e Zootecnia, 2015.

Thomas, F .C., Mullen, W., Tassi, R., Ramírez-Torres, A., Mudaliar, M., McNeilly, T. N., Zadoks, R. N., Burchmore, R., & David Eckersall, P. (2016). Mastitomics, the integrated omics of bovine milk in an experimental model of Streptococcus uberis astitis: 1. High abundance proteins, acute phase proteins and peptidomics. Mol Biosyst., 12 (9): 2735-47.

Tothova, C., Nagy, O., & Kovac, G. (2014). Acute phase proteins and their use in the diagnosis of diseases in ruminants: a review. Veterinarni Medicina, 59 (4): 163–80.

Zabolewicz, T., Barcewicz, M., Brym, P., Puckowska, P., & Kamiński, S. (2014). Association of polymorphism within LTF gene promoter with lactoferrina concentration in milk of Holstein cows. Pol J Vet Sci., 17(4):633-41.

Zbinden, C., Stephan, R., Johler, S., Borel, N., Bünter, J., Bruckmaier, R. M., & Wellnitz, O. (2014). The inflammatory response of primary bovine mammary epithelial cells to Staphylococcus aureus strains, is linked to the bacterial phenotype. PLoS One, 9 (1): 1-9.

Zhang, L., Boeren, S., van Hooijdonk, A. C., Vervoort, J. M., & Hettinga, K. A. (2015). A proteomic perspective on the changes in milk proteins due to high somatic cell count. J Dairy Sci. 98 (8): 5339-51.

Wheeler, T. T., Smolenski, G. A., Harris, D. P., Gupta, S. K., Haigh, B. J., Broadhurst, M. K., Molenaar, A. J., & Stelwagen, K. (2012). Host-defense-related proteins in cow’s milk. Animal Cons, 6 (3): 415-22.



How to Cite

ALVES, F. A. de F. .; SOLA, M. C. .; MESQUITA, A. J. Proteinogram of milk from cows with subclinical mastitis as a function of the score of somatic cells. Research, Society and Development, [S. l.], v. 10, n. 9, p. e2210917779, 2021. DOI: 10.33448/rsd-v10i9.17779. Disponível em: Acesso em: 23 sep. 2021.



Agrarian and Biological Sciences