Inhibition of Listeria monocytogenes by bacteriocin-producing Bacillus velezensis isolated from silage




Anti-Listeria activity; Bacteriocin; Bacillus.


The aim of this study was to investigate the production of anti-Listeria bacteriocins by naturally occurring bacteria on silage and to characterize the most promising bacteriocin. The production of bacteriocins was evaluated by the spot-on-lawn method. The presence of interfering factors and the sensitivity to proteinase K were analyzed. The spectrum of activity was determined and the most promising bacteriocin-producing isolate was identified, being selected for the subsequent experiments. The antimicrobial peptide was extracted, analyzed regarding temperature and pH sensitivities, and purified. Of the 37 isolates evaluated, seven showed anti-Listeria activity. The presence of bacteriophages and production of acidic compounds were not detected. The selected antimicrobial compound was sensitive to proteinase K and the producing-bacterium was identified as Bacillus velezensis. The crude extract maintained the antimicrobial activity in different temperatures and pH conditions. In conclusion, the bacteriocin produced by Bacillus velezensis showed strong activity against Listeria monocytogenes, and great stability to elevated temperature and adverse pH, desirable features for future biotechnological applications.


Abriouel, H., Franz, C. M., Omar, N. B., Gálvez, A. (2011). Diversity and applications of Bacillus bacteriocins. FEMS Microbiology Reviews, 35, 201-232.

Amado, I. R., Fuciños, C., Fajardo, P., Guerra, N. P., Pastrana, L. (2012). Evaluation of two bacteriocin-producing probiotic lactic acid bacteria as inoculants for controlling Listeria monocytogenes in grass and maize silages. Animal Feed Science and Technology, 175, 137-149.

Ansari, A., Aman, A., Siddiqui, N. N., Iqbal, S. (2012). Bacteriocin (BAC-IB17): screening, isolation and production from Bacillus subtilis KIBGE IB-17. Pakistan Journal of Pharmaceutical Sciences, 25, 195-201.

Baruzzi, F., Quintieri, L., Morea, M., Caputo, L. (2011). Antimicrobial compounds produced by Bacillus spp. and applications in food. Science Against Microbial Pathogens: Communicating Current Research and Technological Advances, 2, 1102-1111.

Booth, S. J., Johnson, J. L., Wilkins, T. D. (1977). Bacteriocin production by strains of Bacteroides isolated from human feces and the role of these strains in the bacterial ecology of the colon. Antimicrobial Agents and Chemotherapy, 11, 718-724.

Bordignon-Junior, S. E., Miyaoka, M. F., da Luz Costa, J., Benavente, C. A. T., Couto, G. H., Soccol, C. R. (2013). Inhibiting Gram-negative bacteria growth in micro dilution by Nisin and EDTA treatment. Journal of Biotechnology and Biodiversity, 3, 127-135.

Bromberg, R., Moreno, I., Delboni, R. R., Cintra, H. C. (2006). Characterization of the bacteriocin produced by Lactococcus lactis ssp. hordniae CTC 484 and the effect of this compound on Listeria monocytogenes in beef. Food Science and Technology, 26, 135-144.

Brugere-Picoux, J. (2008). Ovine listeriosis. Small Ruminant Research, 76, 12-20.

Buchanan, R. L., Gorris, L. G. M., Hayman, M. M., Jackson, T. C., Whiting, R. C. (2017). A review of Listeria monocytogenes: An update on outbreaks, virulence, dose-response, ecology, and risk assessments. Food Control, 75, 1-13.

Campero, C. M., Odeón, A. C., Cipolla, A. L, Moore, D. P., Poso, M. A., Odriozola, E. (2002). Demonstration of Listeria monocytogenes by immunohistochemistry in formalin‐fixed brain tissues from natural cases of ovine and bovine encephalitis. Journal of Veterinary Medicine, 49, 379-383.

Castro, F. G. F., Nussio, L. G., Haddad, C. M., Campos, F. P., Coelho, R. M., Mari, L. J., Toledo, P. A. (2006). Perfil microbiológico, parâmetros físicos e estabilidade aeróbia de silagens de capimtifton 85 (Cynodon sp.) confeccionadas com distintas concentrações de matéria seca e aplicação de aditivos. Revista Brasileira de Zootecnia, 35, 358-71.



























Cheng, Q., Li, P., Xiao, B., Yang, F., Li, D., Ge, G., Jia, Y., Bai, S. (2021). Effects of LAB inoculant and cellulase on the fermentation quality and chemical composition of forage soybean silage prepared with corn stover. Grassland Science, 67, 83-90.

Cladera-Olivera, F., Caron, G. R., Brandelli, A. (2004). Bacteriocin-like substance production by Bacillus licheniformis strain P40. Letters in Applied Microbiology, 38, 251-256.

Collins, F. W., O’Connor, P. M., O'Sullivan, O., Rea, M. C., Hill, C., Ross, R. P. (2016). Formicin - a novel broad-spectrum two-component lantibiotic produced by Bacillus paralicheniformis APC 1576. Microbiology, 162, 1662-1671.

Contreras-Govea, F. E., Muck, R. E., Mertens, D. R., Weimer, P. J. (2011). Microbial inoculant effects on silage and in vitro ruminal fermentation, and microbial biomass estimation for alfalfa, bmr corn, and corn silages. Animal Feed Science and Technology, 163, 2-10.

Cotter, P. D., Hill, C., Ross, R. P. (2005). Bacteriocins: developing innate immunity for food. Nature Reviews Microbiology, 3, 777–788.

De Oliveira, C. P., de Siqueira Júnior, J. P., Da Silva, J. Á. (2012). Bacteriocinas como alternativa na conservação de alimentos. Revista Verde, 7, 09-15.

Dolenčić Špehar, I., Bendelja Ljoljić, D., Petanjek, Z., Zamberlin, Š., Tudor Kalit, M. & Samaržija, D. (2020). Antimicrobial activity of bacteriocins of Lactic Acid Bacteria on Listeria monocytogenes, Staphylococcus aureus and Clostridium tyrobutyricum in cheese production. Mljekarstvo, 70, 135-149.

Drider, D., Fimland, G., Héchard, Y., McMullen, L. M., Prévost, H. (2006). The continuing story of class IIa bacteriocins. Microbiology and Molecular Biology Reviews, 70, 564-82.

Durmaz, H., Avci, M., Aygün, O. (2015). The Presence of Listeria Species in Corn Silage and Raw Milk Produced in Southeast Region of Turkey. Kafkas Universitesi Veteriner Fakultesi Dergisi, 21, 41-44.

Fagundes, H., Oliveira, C. A. F. (2004). Infecções intramamárias causadas por Staphylococcus aureus e suas implicações em saúde pública. Ciência Rural, 34, 1315-1320.

Fentahun, T., Fresebehat, A. (2012). Listeriosis in small ruminants: a review. Advances Biological Research, 6, 202-209.

Flythe, M. D., Russell, J. B. (2004). The effect of pH and a bacteriocin (bovicin HC5) on Clostridium sporogenes MD1, a bacterium that has the ability to degrade amino acids in ensiled plant materials. FEMS Microbiology Ecology, 47, 215-22.

Gálvez, A., Maqueda, M., Martínez-Bueno, M., Lebbadi, M., Valdivia, E. (1993). Isolation and physico-chemical characterization of an antifungal and antibacterial peptide produced by Bacillus licheniformis A12. Applied Microbiology and Biotechnology, 39, 438-442.

Gerst, M. M., Dudley, E. G., Xiaoli, L., Yousef, A. E. (2016). Draft genome sequence of Bacillus velezensis GF610, a producer of potent anti-Listeria agents. Genome Announcements, 5, e01046-17.

Gray, E. J., Lee, K. D., Souleimanov, A. M., Di Falco, M. R., Zhou, X., Ly, A., Smith, D. L. (2006). A novel bacteriocin, thuricin 17, produced by plant growth promoting rhizobacteria strain Bacillus thuringiensis NEB17: isolation and classification. Journal of Applied Microbiology, 100, 545-554.

Heir, E., Moretro, T., Simensen, A., Langsrud, S. (2018). Listeria monocytogenes strains show large variations in competitive growth in mixed culture biofilms and suspensions with bacteria from food processing environments. International Journal of Food Microbiology, 275, 46-55.

Ivanova, I., Miteva, V., Stefanova, T. S., Pantev, A., Budakov, I., Danova, S., Moncheva, P., Nikolova, I., Dousset, X., Boyaval, P. (1998). Characterization of a bacteriocin produced by Streptococcus thermophilus 81. International Journal of Food Microbiology, 42, 147-158.

Junior, J. A. F., Nascimento, K. A., Miguel, M. P. (2015). Aborto e morte neonatal por listeriose em ruminantes. Investigação, 14, 85-89.

Lawton, E. M., Ross, R. P, Hill, C., Cotter, P. D. (2007). Two-peptide lantibiotics: a medical perspective. Mini reviews in Medicinal Chemistry, 7, 1236-1247.

Lee, S. G., Chang, H. C. (2018). Purification and characterization of mejucin, a new bacteriocin produced by Bacillus subtilis SN7. LWT. Journal of Food Science and Technology, 87, 8-15.

Lewus, C. B., Montville, T. J. (1991). Detection of bacteriocins produced by lactic acid bacteria. Journal of Microbiological Methods, 13, 145-50.

Lim, K. B., Balolong, M. P., Kim, S. H., Oh, J. K., Lee, J. Y., Kang, D. K. (2016). Isolation and characterization of a broad spectrum bacteriocin from Bacillus amyloliquefaciens RX7. BioMed Research International, 2016, 1-7.

Liu, G., Kong, Y., Fan, Y., Geng, C., Peng, D., Sun, M. (2017). Whole-genome sequencing of Bacillus velezensis LS69, a strain with a broad inhibitory spectrum against pathogenic bacteria. Journal of Biotechnology, 249, 20-24.

Mantovani, H. C., Hu, H., Worobo, R. W., Russell, J. B. (2002). Bovicin HC5, a bacteriocin from Streptococcus bovis HC5. Microbiology, 148, 3347-52.

Martirani, L., Varcamonti, M., Naclerio, G., De Felice, M. (2002). Purification and partial characterization of bacillocin 490, a novel bacteriocin produced by a thermophilic strain of Bacillus licheniformis. Microbial Cell Factories, 1, 1-5.

Oliveira, S. D., Santos, L. R., Schuch, D. M. T., Silva, A. B., Salle, C. T. P., Canal, C. W. (2002). Detection and identification of salmonellas from poultry-related samples by PCR. Veterinary Microbiology, 87, 25-35.

Oscáriz, J. C., Cintas, L., Holo, H., Lasa, Í., Nes, I. F., Pisabarro, A. G. (2006). Purification and sequencing of cerein 7B, a novel bacteriocin produced by Bacillus cereus Bc7. FEMS Microbiology Letters, 254, 108-115.

Oscáriz, J. C., Lasa, I., Pisabarro, A. G. (1999). Detection and characterization of cerein 7, a new bacteriocin produced by Bacillus cereus with a broad spectrum of activity. FEMS Microbiology Letters, 178, 337-341.

Paiva, A. D., Breukink, E., Mantovani, H. C. (2011). Role of lipid II and membrane thickness in the mechanism of action of the lantibiotic bovicin HC5. Antimicrobial Agents and Chemotherapy, 55, 5284-93.

Reis, C. M. F. D., Barbosa, A. V., Rusak, L. A., Vallim, D. C., Hofer, E. (2011). Antimicrobial susceptibilities of Listeria monocytogenes human strains isolated from 1970 to 2008 in Brazil. Revista da Sociedade Brasileira de Medicina Tropical, 44, 173-176.

Sutyak, K. E., Anderson, R. A., Dover, S. E., Feathergill, K. A., Aroutcheva, A. A., Faro, S., Chikindas, M. L. (2008). Spermicidal activity of the safe natural antimicrobial peptide subtilosin. Infectious Diseases in Obstetrics and Gynecology, 2008, 540758.

Tagg, J. R., Dajani, A. S., Wannamaker, L. W. (1976). Bacteriocins of Gram-positive bacteria. Bacteriological Reviews, 40, 722-756.

Todorov, S. D., Wachsman, M., Tomé, E., Dousset, X., Destro, M. T., Dicks, L. M. T., Drider, D. (2010). Characterization of an antiviral pediocin-like bacteriocin produced by Enterococcus faecium. Food Microbiology, 27, 869-79.

Weinberg, Z. G., Muck, R. E. (1996). New trends and opportunities in the development and use of inoculants for silage. FEMS Microbiology Reviews, 19, 53-68.

Yang, S. C., Lin, C. H., Fang, J. N. (2014). Antibacterial activities of bacteriocins: application in foods and pharmaceuticals. Frontiers in Microbiology, 5, 1-10.

Yildirim, M. (2011). Purification of buchnericin LB produced by Lactobacillus buchneri LB. Turkish Journal of Biology, 25, 59-65.

Zopollatto, M., Daniel, J. L. P., Nussio, L. G. (2009). Aditivos microbiológicos em silagens no Brasil: revisão dos aspectos da ensilagem e do desempenho de animais. Revista Brasileira de Zootecnia, 38, 170-89.




How to Cite

OLIVEIRA, L. B. A.; SABINO, Y. N. V. .; BARROSO, M. do V. .; FERREIRA, R. K. .; LIMA, J. F.; ARCURI, P. B.; CARNEIRO, J. da C.; MENDONÇA, R. J. de; RIBEIRO, J. B.; FERREIRA-MACHADO, A. B. .; PAIVA, A. D. Inhibition of Listeria monocytogenes by bacteriocin-producing Bacillus velezensis isolated from silage. Research, Society and Development, [S. l.], v. 10, n. 9, p. e2610917783, 2021. DOI: 10.33448/rsd-v10i9.17783. Disponível em: Acesso em: 18 sep. 2021.



Agrarian and Biological Sciences