Use of fluoroquinolones in domestic dogs and cats

Authors

DOI:

https://doi.org/10.33448/rsd-v10i9.17858

Keywords:

Antibiotic therapy; Bacterial resistance; Bacterial infection; Quinolones.

Abstract

Fluoroquinolones are synthetic drugs that have evolved over time, being formed by a group of antibiotics developed from nalidixic acid, thus containing four generations with structural differences that alter the spectrum of activity. Fluroquinolones are used worldwide in the treatment of infections of bacterial origin. This study aimed to gather information on the use of fluoroquinolones in domestic dogs and cats. To conduct this literature review, data were collected from 2006 to 2019 in the literature available at the Capes Portal, Google Scholar and books, using the following descriptors: fluroquinolones in dogs and fluroquinolones in cats, also using these words in Portuguese. From this search it can be seen that fluroquinolones are indicated in human and veterinary therapies, and currently have very satisfactory antimicrobial activity, good availability through the oral route, good diffusion to tissues, prolonged half-life, and significantly reduced toxicity. Resistance to this antibiotic can be attributed to factors such as: indiscriminate and abusive use, ease of access, misuse in non-infectious treatments, among other factors. They are indicated mainly for dogs and cats with bacterial infections of Gram-negative, Gram-positive, and anaerobic bacteria. It is concluded that antimicrobials from the quinolone group have evolved over time with the intention of creating effective antimicrobials with broad action, minimal adverse effects, and affordability.

References

Barros, M. R., Silveira, W. D., Araújo, J. M., Costa, E. P., Oliveira, A. A. F., Santos, A. P. S. F., Silva, V. A. S., & Mota, R. A. (2012). Resistência antimicrobiana e perfil plasmidial de Escherichia coli isolada de frangos de corte e poedeiras comerciais no Estado de Pernambuco. Pesquisa Veterinária Brasileira, 32(5), 405-410. doi: 10.1590/S0100-736X2012000500008.

Boothe, D. M., Boeckh, A., Simpson, R. B. & Dubose, K. (2006). Comparison of pharmacodynamic and pharmacokinetic indices of efficacy for 5 fluoroquinolones toward pathogens of dogs and cats. Journal of Veterinary Internal Medicine, 20(6), 1297-306. doi: 10.1892/0891-6640(2006)20[1297:copapi]2.0.co;2.

Boothe, D. M., Bush, K. M., Boothe, H. W., & Davis, H. A. (2018). Pharmacokinetics and pharmacodynamics of oral pradofloxacin administration in dogs. American Journal of Veterinary Research, 79(12), 1268-1276. doi: 10.2460/ajvr.79.12.1268.

Cardoso, A. L. S. P., Kanashiro, A. M. I., Stoppa, G. F. Z., Castro, A. G. M., Luciano, R. L., & Tessari, E. N. C. (2015). Avaliação do perfil de resistência antimicrobiana de Escherichia coli isolada de aves comerciais. Revista Eletrônica Nutritime, 12(2), 3980–3988. Disponível em: https://www.nutritime.com.br/site/wp-content/uploads/2020/02/Artigo-297.pdf.

Carvalho, V. M., Spinola, T., Tavolari, F., Irino, K., Rosana M., Oliveira, R. M., & Ramos, M. C. C. (2014). Infecções do trato urinário (ITU) de cães e gatos: etiologia e resistência aos antimicrobianos. Pesquisa Veterinária Brasileira, 34(1), 62-70. doi: 10.1590/S0100-736X2014000100011.

Ceric, O., Tyson, G. H., Goodman, L. B., Mitchel, P. K., Zhang, Y., Prarat, M.,… Reimschuessel, R. (2019). Enhancing the one health initiative by using whole genome sequencing to monitor antimicrobial resistance of animal pathogens: Vet-LIRN collaborative project with veterinary diagnostic laboratories in United States and Canada. BMC Veterinary Research, 15(1), 1-13. doi: 10.1186/s12917-019-1864-2.

Dimitrova, D., Dimitrova, A., & Tsoneva, D. (2013). Comparative analysis of enrofloxacin pharmacokinetics in dogs and cats. Bulgarian Journal of Agricultural Science, 19(4), p. 860-865, 2013. Disponível em: https://www.agrojournal.org/19/04-38.pdf.

Domingos, L. C., Moreira, M. V., Keller, K. M., Viana, F. A., Melo, M. M., & Soto-Blanco, B. (2017). Simultaneous quantification of gatifloxacin, moxifloxacin, and besifloxacin concentrations in cornea and aqueous humor by LC-QTOF/MS after topical ocular dosing. Journal of Pharmacological and Toxicological Methods, 83, p. 87-93. doi: 10.1016/j.vascn.2016.09.006.

Eshar, D., Wright, L. T., Mccullough, C. E., & Kukanich, B. (2018). Pharmacokinetics of enrofloxacin and its metabolite ciprofloxacin following single-dose subcutaneous injection in black-tailed prairie dogs (Cynomys ludovicianus). American Jornal of Veterinary Research, 79(6), 658-663. doi: 10.2460/ajvr.79.6.658.

Farca, A. M., Cavana, P., Robino, P., & Nebbia, P. (2007). In vitro antimicrobial activity of marbofloxacin and enrofloxacin against bacterial strains isolated from companion animals. Schweizer Archiv für Tierheilkunde, 149(6), 265-271. doi: 10.1024/0036-7281.149.6.265.

Gebru, E., Lee, S. J., Kim, J. C. & Park, S. C. (2011). Allometric scaling of orbifloxacin disposition in nine mammal species: a retrospective analysis. The Journal of Veterinary Medical Science, 73(6), 817-20. doi: 10.1292/jvms.10-0374.

Govendir, M., Hansen, T., Kimble, B., Norris, J. M., Baral, R. M., Wigney, D. I., Gottlieb, S., & Malik, R. (2011). Susceptibility of rapidly growing mycobacteria isolated from cats and dogs, to ciprofloxacin, enrofloxacin and moxifloxacin. Veterinary Microbiology, 147(1-2), 113-8. doi: 10.1016/j.vetmic.2010.06.011.

Guillard, T., Jong, A., Limelette, A., Lebreil, A. L., Madoux, J. & Champs, C. (2016). Characterization of quinolone resistance mechanisms in Enterobacteriaceae recovered from diseased companion animals in Europe. Veterinary Microbiology, 15(194), 23-29. doi: 10.1016/j.vetmic.2015.11.033.

Ishii, J. B., Freitas, J. C., & Arias, M. V. B. (2011). Resistência de bactérias isoladas de cães e gatos no Hospital Veterinário da Universidade Estadual de Londrina (2008-2009). Pesquisa Veterinária Brasileira, 31(6), 533-537. doi: 10.1590/S0100-736X2011000600013.

Jerzsele, Á., & Pásztiné-Gere, E. (2015). Evaluating synergy between marbofloxacin and gentamicin in Pseudomonas aeruginosa strains isolated from dogs with otitis externa. Acta Microbiologica et Immunologica Hungarica, 62(1), 45-55. doi: 10.1556/AMicr.62.2015.1.4.

Jong, A., Muggeo, A., Garch F. E. L., Moyaert, H., Champs, C., & Guillard, T. (2018). Characterization of quinolone resistance mechanisms in Enterobacteriaceae isolated from companion animals in Europe (ComPath II study). Veterinary Microbiology, 216, 159-167. doi: 10.1016/j.vetmic.2018.02.002.

Kizerwetter-Świda, M., Chrobak-Chmiel, D., Rzewuska, M., & Binek, M. (2016). Resistance of canine methicillin-resistant Staphylococcus pseudintermedius strains to pradofloxacin. Journal of Veterinary Diagnostic Investigation, 28(5), 514-8. doi: 10.1177 / 1040638716660131

Kohl, T., Pontarolo, G. H., & Pedrassani, D. (2016). Resistência antimicrobiana de bactérias isoladas de amostras de animais atendidos em hospital veterinário. Saúde Meio Ambiente, 5(2), 115-127. doi: 10.24302/sma.v5i2.1197.

Kukanich, K., Kukanich, B., Guess, S., & Heinrich, E. (2016). Effect of sucralfate on the relative bioavailability of enrofloxacin and ciprofloxacin in healthy fed dogs. Journal of Veterinary Internal Medicine, 30(1), 108-15. doi: 10.1111/jvim.13796.

Lalonde‐Paul, D., Cummings, K. J., Rodriguez‐Rivera, L. D., Wu, J., & Lawhon, S. D. (2018). Ciprofloxacin resistance among Campylobacter jejuni isolates obtained from shelter dogs in Texas. Zoonoses and Public Health, 66(3), 337-342. doi: 10.1111/zph.12544.

Landoni, F. M., & Albarellos, G. A. (2018). Pharmacokinetics of levofloxacin after single intravenous, oral and subcutaneous administration to dogs. Journal of Veterinary Pharmacology and Therapeutics, 42(2), 171-178. doi: 10.1111/jvp.12726.

Lei, Z., Liu, Q., Yang, B., Khaliq, H., Ahmed, S., Fan, B., Cao, J., & Qigai He, Q. (2018). Evaluation of marbofloxacin in beagle dogs after oral dosing: preclinical safety evaluation and comparative pharmacokinetics of two different tablets. Frontiers in Pharmacology, 9, 1-12. doi: 10.3389/fphar.2018.00306.

Leyva, E., Moctezuma, E., Leyva, R., & Oros, S. Estudio de los complejos de inclusión de ácido nalidíxico y ácido oxolínico con ciclodextrinas. Revista da Sociedade Química do México, 48(3), 189-195. Disponível em: http://www.scielo.org.mx/scielo.php?pid=S0583-76932004000300002&script=sci_abstract

Liu, X., Liu, H., Li, Y., & Hao, C. (2017). Association between virulence profile and fluoroquinolone resistance in Escherichia coli isolated from dogs and cats in China. Journal of Infection in Developing Countries, 11(4), 306-313. doi: 10.3855/jidc.8583.

Maaland, M. G., Guardabassi, L., & Papich, M. G. (2014). Minocycline pharmacokinetics and pharmacodynamics in dogs: dosage recommendations for treatment of meticillin-resistant Staphylococcus pseudintermedius infections. Veterinary Dermatology, 25(3), 182-e47. doi: 10.1111/vde.12130.

Moyaert, H., Jong, A., Simjee, S., Rose, M., Youala, M., El Garch, F., … & Morrissey, I. (2019). Survey of antimicrobial susceptibility of bacterial pathogens isolated from dogs and cats with respiratory tract infections in Europe: ComPath results. Journal of Applied Microbiology, 127(1), 29-46. doi: 10.1111/jam.14274.

Papich, M. G. (2012). Manual Saunders de Terapia Veterinária: Pequenos e Grandes Animais. 3ª edição. São Paulo: Saunders Elsevier.

Rodrigues-Silva, C., Maniero, M. G., Peres, M. G., & Guimarães, J. R. (2014). Ocorrência e degradação de quinolonas por processos oxidativos avançados. Química Nova, 37(5), 868-885. doi: https://doi.org/10.5935/0100-4042.20140139

Riviere, J. E. & Papich, M. G. (Ed). (2015) Veterinary Pharmacology and Therapeutics, 10 ed., Wiley-Blackwell.

Sfaciotte, R. A. P., Vignoto, V. K. C., & Wosiacki, S. R. (2014). Perfil de resistência antimicrobiana de isolados bacterianos de afecções clínicas do Hospital Veterinário da Universidade Estadual de Maringá. Revista de Ciência Veterinária e Saúde Pública, 1(1), 29-38. doi: 10.4025/revcivet.v1i1.23281.

Shimizu, T., & Harada, K. (2017). Determination of minimum biofilm eradication concentrations of orbifloxacin for canine bacterial uropathogens over different treatment periods. Microbiology and Immunology, 61(1), 17-22. doi: 10.1111/1348-0421.12461.

Silley, P., Stephan, B., Greife, H. A., & Pridmore, A. (2007). Comparative activity of pradofloxacin against anaerobic bacteria isolated from dogs and cats. The Journal of Antimicrobial Chemotherapy, 60(5), 999-1003. doi: 10.1093/jac/dkm346.

Sousa, J., Alves, G., Fortuna, A. & Falcão, A. (2014). Third and fourth generation fluoroquinolone antibacterials: a systematic review of safety and toxicity profiles. Current Drug Safety, 9(2), 89-105. doi: 10.2174/1574886308666140106154754.

Sumano, H., Ocampo, L., Tapia, G., Mendoza, C. J. & Gutierrez, L. (2018). Pharmacokinetics of enrofloxacin HCl-2H2O (Enro-C) in dogs and pharmacokinetic/pharmacodynamic Monte Carlo simulations against Leptospira spp. Journal of Veterinary Science, 19(5), 600-607. doi: 10.4142/jvs.2018.19.5.600.

Sykes, J. E., & Blondeau, J. M. (2014). Pradofloxacin: a novel veterinary fluoroquinolone for treatment of bacterial infections in cats. The Veterinary Journal, 201(2), 207-14. doi: 10.1016/j.tvjl.2014.06.008.

Yohannes, S., Awji, E. G., Lee, S. J., & Park, S. C. (2015). Pharmacokinetics and pharmacokinetic/pharmacodynamic integration of marbofloxacin after intravenous and intramuscular administration in beagle dogs. Xenobiotica, 45(3), 264-269. doi: 10.3109/00498254.2014.969794.

Published

25/07/2021

How to Cite

SANTOS, M. de F.; MARIOTTO, I. da F. .; MASSITEL, I. L. .; RUBIM, F. M. .; ALMEIDA, J. V. F. C. de .; FELIX , L. A. .; CARVALHO, E. E. N. .; FERRANTE, M. . Use of fluoroquinolones in domestic dogs and cats. Research, Society and Development, [S. l.], v. 10, n. 9, p. e25110917858, 2021. DOI: 10.33448/rsd-v10i9.17858. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/17858. Acesso em: 2 jan. 2025.

Issue

Section

Review Article