Infodemiological study of the COVID-19 pandemic association in Brazil and the volume of internet search

Authors

DOI:

https://doi.org/10.33448/rsd-v10i9.17871

Keywords:

SARS-CoV-2 ; Behavior ; Internet ; Incidence ; Mortality.

Abstract

To verify the existence of a relationship between the search for information on the Internet about COVID-19 and the number of cases and deaths caused by the disease in the Brazilian territory. We performed an infodemiological study using the search word “Coronavirus” on Google Trends™, for each federative unit and the Federal District, referring to the population, the number of confirmed cases and the number of deaths. We then compared each Research Volume Relating to the number of new cases and deaths from COVID-19 reported by the Ministry of Health of Brazil during the period from May to June 2020. The first cases of COVID-19 reported in the country were accompanied by an increase in Internet searches on the subject, with a reduction in interest over the period studied. The average Relative Research Volume was 37.8. There was a positive correlation between cases and deaths, however the correlation between these parameters and the Relative Research Volume behaved with negative significance. Infodemiological data have allowed real-time monitoring of outbreaks of infectious diseases at local and global levels. Brazil showed the opposite behavior to previous studies. We evidenced a strong negative relationship between access to content on the Internet and the number of confirmed cases and deaths from COVID-19 throughout the Brazilian territory.

Author Biographies

Nayanne Ribeiro Gaião Máximo, Centro Universitário Inta

Acadêmica de Odontologia do Centro Universitário INTA - UNINTA

João Victor Taumaturgo Mota , Centro Universitário Inta

Acadêmico de Odontologia do Centro Universitário INTA - UNINTA

Daniel Dutra de Sá, Universidade Estácio de Sá

Acadêmico de Contabilidade pela Universidade Estácio de Sá. Especialista em Gestão da Segurança da Informação e Segurança de Rede de Computadores.

Antônio Édie Brito Mourão , Centro Universitário Inta

Biólogo, Mestre, docente do Centro de Ciências da Saúde Centro Universitário Inta (UNINTA), Sobral, Ceará, Brasil.

Mauro Vinicius Dutra Girão, Centro Universitário Inta

Biólogo, Mestre, Docente do Centro de Ciências da Saúde, curso de Odontologia do Centro Universitário Inta (UNINTA).

References

Almeida, G. B., Pronunciate, M., Grotto, R. M. T., Pugliesi, E. A., Guimarães, R. B., Vilches, T. N., et al. (2020). Two hundred days of COVID-19 in São Paulo State, Brazil. Epidemiol Infect, 148, 1-4.

Amaral, L. S., Santos, A. L. P., Figueredo, M. P. S., Ferreira, D. S. A., Silva, J. E., Santos, H. C. T., et al. (2020). Interiorização do Covid-19: Uma análise da evolução dos casos/10 mil habitantes em municípios da Microrregião de Garanhuns no Estado de Pernambuco, através de modelos de Regressão não linear. Research, Society and Development, 9 (9), 1-19.

Barros, A. J., Romão, E. M., Laudares, S., Morares, R. A. & Gomes, G. G. (2020). The interdisciplinarity of geography and geoprocessing in the mapping of Covid 19 cases in the municipality of João Monlevade- Minas Gerais. Research, Society and Development, 9 (10), 1-18.

Bastos, I. L. G., Passos, A. V., Silva, J. A. & Santos, R. A. (2016). Infecção hospitalar no Centro Cirúrgico: principais agentes causadores, fatores de riscos e medidas de prevenção. Revista Madre Ciência Saúde, 1, 39-53.

Bitar, S. & Steinmetz, W. A. (2020). Scenarios for the Spread of COVID-19 in Manaus, Northern Brazil. An Acad Bras Cienc, 92, 1-12.

Bragazzi, N. L., Bacigaluppi, S., Robba, C., Siri, A., Canepa, G. & Brigo, F. (2016). Infodemiological data of West-Nile vírus disease in Italy in the study period 2004–2015. Data in Brief, 9, 839-845.

Cândido, D. S., Watts, A., Abade, L., Kraemer, M. U. G., Pybus, O. G., Croda, J., et al. (2020). Routes for COVID-19 importation in Brazil. J Travel Med, 27, 1-3.

Cardoso RF, Alberto DS, Maués SCC; Silva SEM, Abreu AC, Coelho JSM, et al. (2021). COVID-19: An epidemiological challenge. Research, Society and Development, 10 (7), 1-9.

Carvalho, T. A., Bochiero, M. N. & Marson, F. A. L. (2021). COVID-19 in Brazil: 150,000 deaths and the Brazilian underreporting. Diagnostic Microbiology and Infectious Disease, 99, 1-3.

Chen, N., Zhou, M., Dong, X., Qu, J., Gong, F., Han, Y., et al. (2020). Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. The Lancet, 395, 507-513.

Cimerman, S., Chebabo, A., Cunha, C. A. & Rodrígez-Morales, A. J., (2020). Deep impact of COVID-19 in the healthcare of Latin America: the case of Brazil. Braz J Infect Dis, 4, 93-95.

Dias, G. N., Pamplona, V. M. S., Rodrigues, A. E., Vogado, G. E. R., Silva-Júnior, W. L., Barreto, W. D. L., et al. (2020). Mathematical and statistical analysis of disease COVID-19 and implications for future projections. Research, Society and Development, 9 (10), 1-23.

Effenberger, M., Kronbichler, A., Shin, J., Mayer, G., Tilg, H. & Perco, P. (2020). Association of the COVID-19 pandemic with Internet Search Volumes: A Google TrendsTM Analysis. International Journal of Infectious Diseases, 95, 192-197.

Eysenbach G. (2009). Infodemiology and Infoveillance: Framework for an Emerging Set of Public Health Informatics Methods to Analyze Search, Communication and Publication Behavior on the Internet. J Med Internet Res, 11, 1-10.

Ferreira, C. M., Almeida, D. D. C., Mattos, M. L. A. D. & Oliveira, T. K. B. (2020). COVID 19: Relação do padrão epidemiológico da COVID-19 entre China e Itália. Research, Society and Development, 9 (7), 1-12.

Gomes, D. S., Andrade, L. A., Ribeiro, C. J. N., Peixoto, M. V. S., Lima, S. V. M. A., Duque, A. M., et al. (2020). Risk clusters of COVID-19 transmission in northeastern Brazil: prospective space–time modelling. Epidemiol Infect, 148, 1-8.

Hosseini, S. S., Asemi, A. & Shabani, A. (2019). Infodemiology in Public Health Infoveillance: An Inevitable Necessity in 21st Century. Knowledge and Information Management, 5, 49-62.

Huang, C., Wang, Y., Li, X., Ren, L., Zhao, J., Hu, Y., et al. (2020). Clinical features of patients infected with 2019 novel coronavírus in Wuhan, China. The Lancet, 395, 497-506.

Instituto Brasileiro de Geografia e Estatítica. (2021). Cidades Estados http:// www.ibge.gov.br/cidades-e-estados.html?view=município

Ling, R. & Lee, J. (2016). Disease Monitoring and Health Campaign Evaluation Using Google Search Activities for HIV and AIDS, Stroke, Colorectal Cancer, and Marijuana Use in Canada: A Retrospective Observational Study. JMIR Public Health Surveill, 2, 1-15.

Lobo, A. P., Cardoso-dos-Santos, A. C., Rocha, M. S., Pinheiro, R. S., Bremm, J. M., Macário, E. M., et al. (2020). COVID-19 epidemic in Brazil: Where are we at?. Int J Infect Dis, 97, 382–385.

Marinho, P. R. D., Cordeiro, G. M., Coelho, H. F. C. & Brandão, S. C. S. (2021). Covid-19 in Brazil: A sad scenario. Cytokine & Growth Factor Reviews, 58, 51-54.

Mavragani, A., Ochoa, G. & Tsagarakis, K. P. (2018). Assessing the methods, tools, and statistical approaches in Google Trends research: systematic review. J Med Internet Res, 20, 1-20.

Mavragani, A. (2020). Tracking COVID-19 in Europe: Infodemiology Approach. JMIR Public Health Surveill, 6, 1-13.

Moretti, F. A., Oliveira, V. E. & Silva, E. M. K. (2012). Acesso a informações de saúde na internet: uma questão de saúde pública? Rev Assoc Med Bras, 58, 650-658.

Neiva, M. B., Carvalho, I., Costa-Filho, E. S., Barbosa-Junior, F., Bernardi, F. A., Sanches, T. L. M., et al. (2020). Brazil: the emerging epicenter of COVID-19 pandemic. Rev Soc Bras Med Trop, 53, 1-8.

Nuti, S. V., Wayda, B., Ranasinghe, I., Wang, S., Dreyer, R. P., Chen, S. I., et al. (2014). The Use of Google Trends in Health Care Research: A Systematic Review. Plos One, 9, 1-49.

Organização Mundial da Saúde. (2021). Painel do Coronavirus da OMS (COVID-19) http://covid19.who.int/.

Serdan, T. D. A., Mais, L. N., Gorjao, R., Pithon-Curi, T. C., Curi, R., & Hirabara, S. M. (2020). COVID-19 in Brazil: Historical cases, disease milestones, and estimated outbreak peak. J Travel Med, 38, 1-2.

Silva, M. N. R. M. O. & Pimentel, A. S. G. (2021). Unveiling social isolation in the daily life of the COVID 19 pandemic. Research, Society and Development, 10 (3), 1-12.

Sousa, H. M., Torres, N. M. F., Moura, M. C. L., Silva, R. P., Araújo, V. L. L., Sousa, R. A., et al. (2020). Comparação de dados sobre óbitos por Covid-19 entre três fontes de informação, Maranhão. Research, Society and Development, 9 (9), 1-13.

Strzelecki, A. & Rizun, M. (2020). Infodemiological Study Using Google Trends on Coronavirus Epidemic in Wuhan, China. IJOE, 16, 139-146.

Tana, J. (2019). Infodemiology Studying rhythmicity in online health information behaviour. Åbo Akademi University.

Wang, R., Pan, M., Zhang, X., Fan, X., Han, M., Zhao, F., et al. (2020). Epidemiological and clinical features of 125 Hospitalized Patients with COVID-19 in Fuyang, Anhui, China. International Journal of Infectious Diseases, 95, 421-428.

Zhu, N., Zhang, D., Wang, W., Li, X., Yang, B., Song, J., et al. (2020). A Novel Coronavirus from Patients with Pneumonia in China, 2019. The New England Journal of Medicine, 382 (8), 727-733.

Zhu, W., Lib, X., Wuc, Y., Xud, C., Lia, L., Yanga, J., et al. (2020). Community quarantine strategy against coronavirus disease 2019 in Anhui: An evaluation based on trauma center patients. International Journal of Infectious Diseases, 96, 417-421.

Published

19/07/2021

How to Cite

MÁXIMO, N. R. G.; MOTA , J. V. T.; SÁ, D. D. de; MOURÃO , A. Édie B. .; GIRÃO, M. V. D. Infodemiological study of the COVID-19 pandemic association in Brazil and the volume of internet search. Research, Society and Development, [S. l.], v. 10, n. 9, p. e1010917817, 2021. DOI: 10.33448/rsd-v10i9.17871. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/17871. Acesso em: 26 sep. 2021.

Issue

Section

Health Sciences