Bromazepam changes performance during target shooting but does not affect the interhemispheric coupling in the theta rhythm of the electroencephalography




Electroencephalography; Coherence; Theta Rhythm; Bromazepam; Target shooting.


Bromazepam emulates the inhibitory effect of the neurotransmitter gamma-aminobutyric acid (GABA) and can lead to impaired visuomotor performance. However, few studies have evaluated its effects on cortical coupling in target shooting activities. The present study aimed to analyze the acute effects of bromazepam administration in a target shooting task and the EEG theta rhythm coherence between frontal, temporal, and motor cortical areas in four shooting preparation periods. Thus, a double blind, crossover study was conducted with 30 subjects under two conditions: bromazepam (6mg) and placebo, with electroencephalographic analysis to simultaneously study the theta rhythm coherence in frontal, temporal, and motor cortex in a target shooting task; and the possible interferences of bromazepam administration. Subjects in the bromazepam group showed lower performance on the task compared to placebo (p=0.001). In addition, our analysis showed decreased coherence between regions in the same hemisphere, increased theta rhythm coherence in interhemispheric regions in frontal, temporal and motor cortex at different intervals in the preparation preceding the shooting (p=0.001). The use of bromazepam may influence task execution, possibly due to neurochemical modulation, during decision making, developing shooting preparation strategies, as well as interfering with the flow of information at the level of attention during task execution.


Ahveninen, J, et al. (2017). MRI ‐ constrained spectral imaging of benzodiazepine modulation of spontaneous neuromagnetic activity in human cortex. Neuroimage, 35: 577–582.

Andres, F. G., et al. (1999). Functional coupling of human cortical sensorimotor areas during bimanual skill acquisition. Brain, 122: 855-870.

Aprigio, D., et al. (2015). Alpha power oscillation in the frontal cortex under Bromazepam and Modafinil effects. Arq Neuropsiquiatr, 73(11):918-23.

Araújo, F., et al. (2011). The effects of bromazepam over the temporoparietal áreas during the performance of a visuomotor task: a qEEGstudy. Neurosci. Lett, 496(2):116-120.

Babiloni, C., et al. (2005). Anticipation of somatosensory and motor events increases centro-parietal functional coupling: an EEG coherence study. Clin Neurophysiol, 117(5): 1000-8.

Bastos, V. H., et al. (2005). Electroencephalography measures in motor skill learning and effects of bromazepam. Arq. Neuro-Psiquiatr, 63(2B): 443-451.


Beudel, M., et al. (2011). Secondary sensory area SII is crucially involved in the preparation of familiar movements compared to movements never made before. Hum Brain Mapp, 32(4):564–579.

Brauns, I., et al. (2014). Changes in the theta band coherence during motor task after hand immobilization. Int Arch Med, 7: 51.

Buzsaki, G., & Draguhn, A. (2004). Neuronal oscillations in cortical networks. Science, 304(5679): 1926-1929.

Clark, M., et al. (2013). Pharmacology illustrate. Artmed.

Coutinho, E. S. F., & Cunha, G. M. (2005). Basic concepts of epidemiology and statistics for reading controlled clinical trials. Rev Bras Psiquiatr. 27: 146-51.

Cunha, M, et al. (2006). Neuromodulatory effect of bromazepam on motor learning: an electroencephalographic approach. Neurosci Lett, 407(2): 166-70.

Cunha, M., et al. (2008). Responsiveness of sensorimotor córtex during pharmacological intervention with bromazepam. Neurosci Lett, 448(1): 33-6.

De Carvalho, M. R., et al. (2015). Frontal córtex absolute beta power measurement in Panic Disorder with Agoraphobia patients. Journal of Affective Disorders, 176-181.

Deakin, J. B., et al. (2004). Diazepam produces disinhibitory cognitive effects in male volunteers. Psychopharmacology (Berl), 173(1-2): 88-97.

Deeny, S. P., et al. (2009). Electroencephalographic coherence during visuomotor performance: a comparison of cortico-cortical communication in expert and novice. Journal of Motor Behavior, 41(2): 106-116.

Desmurge, M., & Sirigu, A. (2009). A parietal-premotor network for movement intention and motor awareness. Trends Cogn Sci., 13(10): 411-9.

Eagleman, D. M., & Pariyadath, V. (2009). Is subjective duration a signature of coding efficiency? Philos. Trans. R. Soc Lond B BiolSci, 364(1525): 1841-1851.

Fortunato, S., et al. (2015). The effects of bromazepam over the central and frontal areas during a motor task: an EEG study. Arq Neuro Psrquiatr, 73(4): 321-9.

Ghafouri, M., et al. (2004). Initiation of rapid reach-and-grasp balance reactions: is a pre-formed visuospatial map used in controlling the initial arm trajectory? Exp Brain Res, 155(4): 532-536.

Golan, D. E. (2012). Princípios de farmacologia: a base fisiopatológica da farmacoterapia. Guanabara Koogan.

Gongora, M., et al. (2014). Absolute Theta Power in the Frontal Cortex During a Visuomotor Task: The Effect of Bromazepam on Attention. Clin EEG Neurosci, 46(4): 292-8.

Gulledge, A. T., & Stuart, G. J. (2003). Excitatory actions of GABA in the cortex. Neuron, 37: 299-309.

Hatfield, B. D., et al. (2013). The influence of social evaluation on cerebral cortical activity and motor performance: a study of “real-life” competition. Int. J. Psychophysiol, 90(2): 240-249.

Hatfield, B. D., et al. (1984). Cognitive processes during self-paced motor performance: an electroencephalographic profile of skilled marksmen. J Sport Psychol, 6:42-59.

Haufler, A. J., et al. (2000). Neuro-cognitive activity during a self-paced visuospatial task: Comparative EEG profiles in marksmen and novice shooters. Biol Psychol, 53:131-160.

Homan, R. W., et al. (1987). Cerebral location of international 10-20 system electrode placement. Electroencephalogr Clin Neurophysiol. Apr, 66(4): 376-82.

Janelle, C. M., et al. (2000). Expertise differences in cortical activation and gaze behavior during rifle shooting. Journal of Sport & ExercisePsychology, 22(2): 167-182.

Jadad, A. R., et al. (1996). Assessing the quality of reports of randomized clinical trials: is blinding necessary? Control Clin Trials. 17: 1-12.

Jorge, M. S., et al. (2007). Study of interhemispheric coherence on healthy adults. ArqNeuropsiquiatr, 65(2B): 377-80.

Kay, L. M. (2006). Theta oscillations and sensorimotor performance. Proceedings of the National Academy of the EUA, 102(10): 3863-3868.

Kerick, S. E., et al. (2004). Cerebral cortical adaptations associated with visuomotor practice. Med Sci Sports Exerc, 36(1): 118-29.

Kerick, S. E., et al. (2001). The role of the left temporal region under the cognitive-motor demands of shooting in skilled marksmen. Biol Psychol, 58(3): 263-277.

Koeneke S, et al. (2004). Bimanual versus unimanual coordination: what makes the difference? NeuroImage, 22(3): 1336–1350.

Linkenkaer-Hansen, K., et al. (2004). Pre-stimulus oscillations increase psychophysical performance in humans. J Neurosci, 24: 10186-10190.

Lino, P. A., et al. (2017). Anxiolytics, Sedatives, and Hypnotics Prescribed by Dentists in Brazil in 2010. Biomed Res Int. 2841549.

Luft, C.; & Andrade, A. (2006). A pesquisa com EEG aplicada à área de aprendizado motor. Revista Portuguesa de Ciências e Desporto. 6: 106-115.

Machado D, et al. (2009). The effects of bromazepam on the performance of a sensory-motor activity: an electroencephalographic study. RevNeurol, 49(6): 295-9.

Makaron, L., et al. (2013). Cognition-impairing effects of benzodiazepine-type drugs: role of GABAA receptor subtypes in an executive function task in rhesus monkeys. Pharmacol Biochem Behav, 104: 62-8.

Mayo, J. P., & Sommer, M. A. (2013). Neuronal correlates of visual time perception at brief timescales. Proc Natl AcadSci USA, 110(4): 1506-11.

Minc D, et al. (2009). Gamma band oscillations under influence of bromazepam during a sensorimotor integration task: An EEG coherence study. Neuroscience Letter, 469: 145-149.

Montenegro, M., et al.. (2005). Neuromodulatory effects of caffeine and bromazepam on visual event-related potential (P300): a comparative study. Arq Neuro-Psiquiatr, 63(2B): 410-5.

Muñoz-Torres, Z., et al. (2011). Diazepam-induced changes in EEG oscillations during performance of a sustained attention task. J Clin Neurophysiol, 28(4): 394-9.

Nguema Ongone, T., et al. (2019). Synthesis of Surfactants Derived from 2-Mercaptobenzimidazole and Study of Their Acute Toxicity and Analgesic and Psychotropic Activities. Biochemistry research international, 9615728.

Pereira A. S., et al. (2018). Metodologia da pesquisa cientifica. [UFSM.

Portella, C. E., et al. (2006). Procedural learning and anxiolytic effects: electroencephalographic, motor and attentional measures. Arq Neuro-Psiquiatr, 64(2-B); 478-484.

Ribeiro, J. A., et al. (2018). Low-frequency rTMS in the superior parietal cortex affects the working memory in horizontal axis during the spatial task performance. Neurosci, 39(3): 527-532.

Sadeghi, N. G., et al. (2011). Neural correlates of subsecond time distortion in the middle temporal area of visual cortex. J Cogn Neurosci, 23:3829- 3840.

Saletu, B., et al. (2002). Classification and evaluation of the pharmacodynamics of psychotropic drugs by single-lead pharmaco-EEG, EEG mapping, and tomography (LORETA). Methods Find Exp Clin Pharmacol, 24(Suppl C): 97-120.

Salles, J. I., et al. (2006). Neuromodulatory effects of bromazepam when individuals were exposed to a motor learning task: quantitative electroencephalography (qEEG). Arq. Neuropsiquiatr, 64(1): 112-117.

Sampaio, I., et al. (2007). Influence of bromazepam on cortical interhemispheric coherence. Arq. Neuro-Psiquiatr,

Sampaio, I., et al. (2008). The influence of bromazepam on cortical power distribution. An Acad Bras Cienc, 80(2): 335 -340.

Schependom, J. V., et al. (2019). Altered transient brain dynamics in multiple sclerosis: Treatment or pathology? Hum Brain Mapp. 40(16): 4789-4800.

Schreckenberger, M., et al. (2004). The thalamus as the generator and modulator of EEG alpha rhythm: a combined PET/EEG study with lorazepam challenge is humans. Neuroimage, 22(2): 637-44.

Sigel, E., & Ernst, M. (2018). The Benzodiazepine Binding Sites of GABAA Receptors. Trends Pharmacol Sci. 39 (7): 659-671.

Stewart, S. A. (2005). The effects of benzodiazepines on cognition. J Clin Psychiatry, 66(suppl 2): 9-13.

Summerfield, C., & Mahgels, J. A. (2005). Coherent theta-band EEG activity predicts item-context binding during encoding. Neuroimage, 24(3): 692-703.

Votaw, V. R., et al. (2019). The epidemiology of benzodiazepine misuse: A systematic review. Drug Alcohol Depend. 1; 200: 95-114.

Womelsdorf, T., et al. (2006). Gamma-band synchronization in visual cortex predicts speed of change detection. Nature, 439(7076): 733-736.




How to Cite

FERNANDES, T. R. S. .; ROCHA, K. de M. .; GUPTA, D.; MARINHO, V.; MOURA, I.; FERNANDES, J. R. N. .; MAGALHÃES, F. E. X.; CARVALHO DA SILVA, V. N. .; ALVES, E. H. P. .; RIBEIRO, P.; VELASQUES, B.; BASTOS, V. H. do V. .; TEIXEIRA, S. S. . Bromazepam changes performance during target shooting but does not affect the interhemispheric coupling in the theta rhythm of the electroencephalography. Research, Society and Development, [S. l.], v. 10, n. 9, p. e33110918174, 2021. DOI: 10.33448/rsd-v10i9.18174. Disponível em: Acesso em: 20 sep. 2021.



Health Sciences