Surface treatments of titanium and zirconia implants: Literature review
DOI:
https://doi.org/10.33448/rsd-v10i9.18197Keywords:
Osseointegration; Titanium; Dental materials; Dental implants.Abstract
The different surface treatments on dental implants have the premise of improving the contact interface between bone and implant, accelerating the osseointegration process. The purpose of this literature review was to verify the different types of surface treatments for titanium and zirconia dental implants, their characteristics and actions on osseointegration. For this, researches were carried out in the national and international databases: PUBMED, SciELO and Google Scholar. The data found demonstrate that in both titanium and zirconia implants, the surfaces can be modified, with the aim of improving biological performance by accelerating the initial healing process, in order to promote an initial stability superior to untreated implants. In addition, changes that promote greater surface energy, increasing wettability and hydrophilicity present greater adhesion and proliferation of osteoblasts and, consequently, a more accelerated bone neoformation, which contribute to this initial process of healing and osseointegration. Despite the variability in the types of treatment, some of which are in common with titanium and zirconia, the changes have proven to be effective, allowing loading in less time. The choice of surface treatment can be determined by bone quality, systemic conditions of the patient and the type of pre-planned loading. Regarding zirconia implants, the studies are promising, but long-term studies are necessary, as there is not yet enough data to clearly and safely indicate the use of these implants, except in cases of proven allergenicity to titanium.
References
Abe, Y., Kokubo, T., & Yamamuro, T. (1990). Apatite coating on ceramics, metals and polymers utilizing a biological process. Journal of Materials Science: Materials in Medicine, 1(4), 233–238.
Albrektsson, T., Brånemark, P.-I., Hansson, H.-A., & Lindström, J. (1981). Osseointegrated Titanium Implants: Requirements for Ensuring a Long-Lasting, Direct Bone-to-Implant Anchorage in Man. Acta Orthopaedica Scandinavica, 52(2), 155–170.
Albrektsson, T., Branemark, P.-I., & Zarb, G. A. (1985). Bone Tissue Response. In Tissue-Integrated Prostheses, Osseointegration in Clinical Dentistry (pp. 129–143). Quintessence Publishing Company.
Albrektsson, Tomas, & Wennerberg, A. (2019). On osseointegration in relation to implant surfaces. Clinical Implant Dentistry and Related Research, 21(S1), 4–7.
Barfeie, A., Wilson, J., & Rees, J. (2015). Implant surface characteristics and their effect on osseointegration. British Dental Journal, 218(5), E9–E9.
Berardi, D., De Benedittis, S., Scoccia, A., Perfetti, G., & Conti, P. (2011). New laser-treated implant surfaces: A histologic and histomorphometric pilot study in rabbits. Clinical & Investigative Medicine, 34(4), 202.
Bermejo, P., Sánchez, M. C., Llama‐Palacios, A., Figuero, E., Herrera, D., & Sanz Alonso, M. (2019). Biofilm formation on dental implants with different surface micro‐topography: An in vitro study. Clinical Oral Implants Research, 30(8), 725–734.
Bernardes, S. R., Claudino, M., & Sartori, I. A. M. (2012). Relevância clínica do tratamento de superfície de implantes dentários. Jornal Ilapeo, 06(02), 65–74.
Bezerra, F. J. B., Pessoa, R. S., & Zambuzzi, W. F. (2015). Carregamento funcional imediato ou precoce de implantes com câmara de cicatrização e nanosuperfície: estudo clínico prospectivo longitudinal. Innov Implant J, Biomater Esthet, 9(2/3), 12-7.
Bormann, K.-H., Gellrich, N.-C., Kniha, H., Dard, M., Wieland, M., & Gahlert, M. (2012). Biomechanical evaluation of a microstructured zirconia implant by a removal torque comparison with a standard Ti-SLA implant. Clinical Oral Implants Research, 23(10), 1210–1216.
Carvalho, B. M., Pellizer, E. P., Moraes, S. L. D., Falcón-Antenucci, R. M., & Ferreira Jr, J. S. (2009). Tratamentos de superfície nos implantes dentários / Surface treatments in dental implants. Rev. Cir. Traumatol. Buco-Maxilo-fac., 9(1), 123–130.
Chambrone, L., Shibli, J. A., Mercúrio, C. E., Cardoso, B., & Preshaw, P. M. (2015). Efficacy of standard (SLA) and modified sandblasted and acid-etched (SLActive) dental implants in promoting immediate and/or early occlusal loading protocols: A systematic review of prospective studies. Clinical Oral Implants Research, 26(4), 359–370.
Costa, L. J., Souza, E. T., Lucena, F. L., & Souza, R. C. V. (2015). Superfície de implantes de titânio e sua capacidade de estímulo na formação óssea: Uma revisão de literatura. Odontol. Clín.-Cient. 14(4), 797–800.
Dagher, M., Mokbel, N., Jabbour, G., & Naaman, N. (2014). Resonance Frequency Analysis, Insertion Torque, and Bone to Implant Contact of 4 Implant Surfaces: Comparison and Correlation Study in Sheep. Implant Dentistry, Publish Ahead of Print.
Degidi, M., Nardi, D., & Piattelli, A. (2012). 10-Year Follow-Up of Immediately Loaded Implants with TiUnite Porous Anodized Surface: 10-Year Follow-Up of TiUnite Surface. Clinical Implant Dentistry and Related Research, 14(6), 828–838.
Esposito, M., Ardebili, Y., & Worthington, H. V. (2014). Interventions for replacing missing teeth: Different types of dental implants. Cochrane Database of Systematic Reviews, (7).
Gaggl, A., Schultes, G., Müller, W. D., & Kärcher, H. (2000). Scanning electron microscopical analysis of laser-treated titanium implant surfaces—A comparative study. Biomaterials, 21(10), 1067–1073.
Gahlert, M., Gudehus, T., Eichhorn, S., Steinhauser, E., Kniha, H., & Erhardt, W. (2007). Biomechanical and histomorphometric comparison between zirconia implants with varying surface textures and a titanium implant in the maxilla of miniature pigs. Clinical Oral Implants Research, 18(5), 662–668.
Gahlert, M., Kniha, H., Weingart, D., Schild, S., Gellrich, NC., & Bormann, KH. (2016). A prospective clinical study to evaluate the performance of zirconium dioxide dental implants in single-tooth gaps. Clinical Oral Implants Research, 27(12), e176–e184.
Gahlert, M., Roehling, S., Sprecher, C. M., Kniha, H., Milz, S., & Bormann, K. (2012). In vivo performance of zirconia and titanium implants: A histomorphometric study in mini pig maxillae: In vivo performance of zirconia and titanium implants. Clinical Oral Implants Research, 23(3), 281–286.
Galan Jr, J., & Vieira, R. M. (2013). Caracterização das superfícies de implantes dentais comerciais em MEV/EDS. Rev. Bras. Odontol., 70(01), 68–79.
Gil, L. F., Marin, C., Teixeira, H., Marão, H. F., Tovar, N., Khan, R., Bonfante, E. A., Janal, M., & Coelho, P. G. (2016). The effect of controlled microrobotized blasting on implant surface texturing and early osseointegration. Journal of Biomaterials Applications, 30(7), 900–907.
Mastrangelo, F., Fioravanti, G., Quaresima, R., Vinci, R., & Gherlone, E. (2011). Self-Assembled Monolayers (SAMs): Which Perspectives in Implant Dentistry? Journal of Biomaterials and Nanobiotechnology, 02(05), 533–543.
Neto, U. G. G., & de Araújo Bacelar, S. M. (2019). Implantes dentários com superfície tratada: revisão de literatura. Brazilian Journal of Implantology and Health Sciences, 1(4), 69-83.
Hafezeqoran, A., & Koodaryan, R. (2017). Effect of Zirconia Dental Implant Surfaces on Bone Integration: A Systematic Review and Meta-Analysis. BioMed Research International, 2017, 1–12.
Hanawa, T. (2020). Zirconia versus titanium in dentistry: A review. Dental Materials Journal, 39(1), 24–36.
Hochscheidt, C. J., Alves, E. D. M., Bernardes, L. A. B., Hochscheidt, M. L., & Hochscheidt, R. C. (2012). Zirconia dental implants: An alternative for today or for the future? (Part II). Dental Press Implantology, 6(4), 114–124.
Jemat, A., Ghazali, M. J., Razali, M., & Otsuka, Y. (2015). Surface Modifications and Their Effects on Titanium Dental Implants. BioMed Research International, 2015, 1–11.
Karthigeyan, S., Ravindran, A., Bhat, R. R., Nageshwarao, M., Murugesan, S., & Angamuthu, V. (2019). Surface modification techniques for zirconia-based bioceramics: A review. Journal of Pharmacy And Bioallied Sciences, 11(6), 131.
Kubasiewicz-Ross, P., Hadzik, J., & Dominiak, M. (2018). Osseointegration of zirconia implants with 3 varyingsurface textures and a titanium implant:A histological and micro-CT study. Advances in Clinical and Experimental Medicine, 27(9), 1173–1179.
Lindhe, J., Meyle, J., & on behalf of Group D of the European Workshop on Periodontology. (2008). Peri-implant diseases: Consensus Report of the Sixth European Workshop on Periodontology. Journal of Clinical Periodontology, 35, 282–285.
Misch, C. E. (2011). Implantes dentais: Contemporâneos. Elsevier
Oliva, J., Oliva, X., & Oliva, J. D. (2010). Five-year success rate of 831 consecutively placed Zirconia dental implants in humans: A comparison of three different rough surfaces. The International Journal of Oral & Maxillofacial Implants, 25(2), 336–344.
Pebé, P., Barbot, R., Trinidad, J., Pesquera, A., Lucente, J., Nishimura, R., & Nasr, H. (1997). Countertorque testing and histomorphometric analysis of various implant surfaces in canines: A pilot study. Implant Dentistry, 6(4), 259–265.
Richardson, D. J., Nilsson, J., & Clarkson, W. A. (2010). High power fiber lasers: Current status and future perspectives [Invited]. Journal of the Optical Society of America B, 27(11), B63.
Roccuzzo, M., & Wilson Jr., T. G. (2008). A Prospective Study of 3 Weeks’ Loading of Chemically Modified Titanium Implants in the Maxillary Molar Region: 1-year Results. Int J Oral Maxillofac Implants, 24(1),65-72.
Roehling, S., Astasov-Frauenhoffer, M., Hauser-Gerspach, I., Braissant, O., Woelfler, H., Waltimo, T., Kniha, H., & Gahlert, M. (2017). In Vitro Biofilm Formation on Titanium and Zirconia Implant Surfaces. Journal of Periodontology, 88(3), 298–307.
Roehling, S., Gahlert, M., Janner, S., Meng, B., Woelfler, H., & Cochran, D. (2019). Ligature-Induced Peri-implant Bone Loss Around Loaded Zirconia and Titanium implants. The International Journal of Oral & Maxillofacial Implants, 34(2), 357–365.
Roehling, S., Schlegel, K. A., Woelfler, H., & Gahlert, M. (2019). Zirconia compared to titanium dental implants in preclinical studies—A systematic review and meta‐analysis. Clinical Oral Implants Research, 30(5), 365–395.
Romanos, G. E., Javed, F., Delgado-Ruiz, R. A., & Calvo-Guirado, J. L. (2015). Peri-implant Diseases. Dental Clinics of North America, 59(1), 157–178.
Rosifini, M. C., de Carvalho, S. F., Roberto, C., de Magalhães, A. P., & Rosifini, A. P. (2011). Tratamento de superfície de implantes dentparios: SBF. 32(2), 38–43.
Rupp, F., Gittens, R. A., Scheideler, L., Marmur, A., Boyan, B. D., Schwartz, Z., & Geis-Gerstorfer, J. (2014). A review on the wettability of dental implant surfaces I: Theoretical and experimental aspects. Acta Biomaterialia, 10(7), 2894–2906.
Saulacic, N., & Schaller, B. (2019). Prevalence of Peri-Implantitis in Implants with Turned and Rough Surfaces: A Systematic Review. Journal of Oral and Maxillofacial Research, 10(1).
Sadowsky, S. J. (2020). Has zirconia made a material difference in implant prosthodontics? A review. Dental Materials, 36(1), 1–8. https://doi.org/10.1016/j.dental.2019.08.100
Schünemann, F. H., Galárraga-Vinueza, M. E., Magini, R., Fredel, M., Silva, F., Souza, J. C. M., Zhang, Y., & Henriques, B. (2019). Zirconia surface modifications for implant dentistry. Materials Science and Engineering: C, 98, 1294–1305.
Şener-Yamaner, I. D., Yamaner, G., Sertgöz, A., Çanakçi, C. F., & Özcan, M. (2017). Marginal Bone Loss Around Early-Loaded SLA and SLActive Implants: Radiological Follow-Up Evaluation Up to 6.5 Years. Implant Dentistry, 26(4), 592–599.
Sennerby, L., Dasmah, A., Larsson, B., & Iverhed, M. (2005). Bone Tissue Responses to Surface-Modified Zirconia Implants: A Histomorphometric and Removal Torque Study in the Rabbit. Clinical Implant Dentistry and Related Research, 7(s1), s13–s20.
Shi, Q., Qian, Z., Liu, D., & Liu, H. (2017). Surface Modification of Dental Titanium Implant by Layer-by-Layer Electrostatic Self-Assembly. Frontiers in Physiology, 8, 574.
Silva, F. L. e, Rodrigues, F., Pamato, S., & Pereira, J. R. (2016). Tratamento de superfície em implantes dentários: Uma revisão de literatura. Revista da Faculdade de Odontologia - UPF, 21(1).
Smeets, R., Stadlinger, B., Schwarz, F., Beck-Broichsitter, B., Jung, O., Precht, C., Kloss, F., Gröbe, A., Heiland, M., & Ebker, T. (2016). Impact of Dental Implant Surface Modifications on Osseointegration. BioMed Research International, 2016, 1–16.
Soares, P. B. F., Moura, C. C. G., Claudino, M., Carvalho, V. F., Rocha, F. S., & Zanetta-Barbosa, D. (2015). Influence of Implant Surfaces on Osseointegration: A Histomorphometric and Implant Stability Study in Rabbits. Brazilian Dental Journal, 26(5), 451–457.
de Souza, A. S., Colombo, L. T., Hadad, H., Santos, A. F. P., da Silva, R. C., Poli, P. P., ... & de Carvalho, P. S. P. (2020). Bone regeneration around implants with modified surface by acid conditioning with the fluoride ions deposition. Journal of Osseointegration, 12(3), 222-228.
Steinemann, S. G. (1998). Titanium ? The material of choice? Periodontology 2000, 17(1), 7–21.
Velasco-Ortega, E., Ortiz-García, I., Jiménez-Guerra, A., Monsalve-Guil, L., Muñoz-Guzón, F., Perez, R. A., & Gil, F. J. (2019). Comparison between Sandblasted Acid-Etched and Oxidized Titanium Dental Implants: In Vivo Study. International Journal of Molecular Sciences, 20(13), 3267.
Wennerberg, A., & Albrektsson, T. (2009). Effects of titanium surface topography on bone integration: A systematic review. Clinical Oral Implants Research, 20, 172–184.
Wennerberg, A., Albrektsson, T., & Lausmaa, J. (1996). Torque and histomorphometric evaluation of c.p. Titanium screws blasted with 25- and 75-microns-sized particles of Al2O3. Journal of Biomedical Materials Research, 30(2), 251–260.
Wennerberg, A., Jimbo, R., Stübinger, S., Obrecht, M., Dard, M., & Berner, S. (2014). Nanostructures and hydrophilicity influence osseointegration: A biomechanical study in the rabbit tibia. Clinical Oral Implants Research, 25(9), 1041–1050.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Ellen Christine Rodrigues de Abreu; Debora Serrano de Macedo; Sisleide Pejão; Paulo Luis Cosimato; Wilson Roberto Sendyk; Heloisa Fonseca Marão; Angelica Castro Pimentel
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.