Inflammatory and immunohistochemical evaluation of bioceramic repair materials after pulpotomy: study in wistar rats




Pulpotomy; Inflammation; Materials Testing; Endodontics.


Pulpotomy is an alternative of conservative treatment which aims to preserve pulp vitality within root portion, with the aid of biocompatible materials on this remaining living tissue. This study aimed to evaluate the biological response of the pulp remnant to Biodentine® and white Angelus MTA® bioceramic repair cements compared to calcium hydroxide after pulpotomy. Twenty-four male rats had the coronary pulps of the first and second molars exposed and removed with a sharp curette. The remaining pulp tissue received one of the experimental materials: Biodentine®, white Angelus MTA® or Ca(OH)2 + distilled water and sealed with glass ionomer. One group was sealed directly with glass ionomer as a negative control group. After 7 and 15 days, the animals were euthanized and the pieces submitted to histological processing to evaluate the inflammatory process with HE staining and immunohistochemistry (Fibronectin and Tenascin), through the attribution of scores from 1 to 4. Formation of hard tissue bridging was observed in HE staining, evaluating presence, continuity and morphology. Data were submitted to the Kruskal Wallis and Dunn test (p<0.05). Statistical analysis showed that at 7 days MTA and Ca(OH)2 had greater hard tissue bridge continuity than glass ionomer (p<0.05). Biodentine® showed better morphological aspects compared to glass ionomer (p<0.05). At 15 days, MTA and Biodentine® showed complete hard tissue bridge (p<0.05). For immunostaining, Biodentine® obtained greater marking than the glass ionomer for Fibronectin and Tenascin. Biodentine®, white MTA Angelus® and calcium hydroxide showed the ability to induce mineralization according to the applied methodology. However, Biodentine® showed superior tissue response than glass ionomer and calcium hydroxide.


Abo El-Mal, E. O., Abu-Seida, A. M., & El Ashry, S. H. (2021). Biological evaluation of hesperidin for direct pulp capping in dogs' teeth. International journal of experimental pathology, 102(1), 32–44.

Accorinte, M., Holland, R., Reis, A., Bortoluzzi, M. C., Murata, S. S., Dezan, E., Jr, Souza, V., & Alessandro, L. D. (2008). Evaluation of mineral trioxide aggregate and calcium hydroxide cement as pulp-capping agents in human teeth. Journal of endodontics, 34(1), 1–6.

Al-Hezaimi, K., Al-Tayar, B. A., Bajuaifer, Y. S., Salameh, Z., Al-Fouzan, K., & Tay, F. R. (2011). A hybrid approach to direct pulp capping by using emdogain with a capping material. Journal of endodontics, 37(5), 667–672.

Aukhil, I., Sahlberg, C., & Thesleff, I. (1996). Basal layer of epithelium expresses tenascin mRNA during healing of incisional skin wounds. Journal of periodontal research, 31(2), 105–112.

Baldissera, E. Z., Silva, A. F., Gomes, A. P., Etges, A., Botero, T., Demarco, F. F., & Tarquinio, S. B. (2013). Tenascin and fibronectin expression after pulp capping with different hemostatic agents: a preliminary study. Brazilian dental journal, 24(3), 188–193.

Benetti, F., Gomes-Filho, J. E., de Azevedo-Queiroz, I. O., Carminatti, M., Conti, L. C., Dos Reis-Prado, A. H., de Oliveira, S., Ervolino, E., Dezan-Júnior, E., & Cintra, L. (2021). Biological assessment of a new ready-to-use hydraulic sealer. Restorative dentistry & endodontics, 46(2), e21.

Bogen, G., Kim, J. S., & Bakland, L. K. (2008). Direct pulp capping with mineral trioxide aggregate. Journal of the American Dental Association, 193(3), 305-315.

Borlina, S. C., de Souza, V., Holland, R., Murata, S. S., Gomes-Filho, J. E., Dezan Junior, E., Marion, J. J., & Neto, D. (2010). Influence of apical foramen widening and sealer on the healing of chronic periapical lesions induced in dogs' teeth. Oral surgery, oral medicine, oral pathology, oral radiology, and endodontics, 109(6), 932–940.

Bueno, C. R. E., Sumida, D. H., Duarte, M. A. H., Ordinola-Zapata, R., Azuma, M. M., Guimarães, G., Pinheiro, T. N., & Cintra, L. T. A. (2021). Accuracy of radiographic pixel linear analysis in detecting bone loss in periodontal disease: Study in diabetic rats. Saudi Dental Journal, in press, 1-10.

Bueno, C. R. E., Vasques, A. M. V., Cury, M. T. S., Sivieri-Araújo, G., Jacinto, R. C., Gomes-Filho, J. E., Cintra, L., & Dezan-Júnior, E. (2019). Biocompatibility and biomineralization assessment of mineral trioxide aggregate flow. Clinical oral investigations, 23(1), 169–177.

Bueno, C. R.E., Valentim, D., Marques, V. A., Gomes-Filho, J. E., Cintra, L. T., Jacinto, R. C., & Dezan-Junior, E. (2016). Biocompatibility and biomineralization assessment of bioceramic-, epoxy-, and calcium hydroxide-based sealers. Brazilian oral research, 30(1), S1806-83242016000100267.

Çalışkan, M. K., & Güneri, P. (2017). Prognostic factors in direct pulp capping with mineral trioxide aggregate or calcium hydroxide: 2- to 6-year follow-up. Clinical oral investigations, 21(1), 357–367.

Çelik, B. N., Mutluay, M. S., Arıkan, V., & Sarı, Ş. (2019). The evaluation of MTA and Biodentine as a pulpotomy materials for carious exposures in primary teeth. Clinical Oral Investigations, 23(2), 661-666.

Chicarelli, L., Webber, M., Amorim, J., Rangel, A., Camilotti, V., Sinhoreti, M., & Mendonça, M. J. (2021). Effect of Tricalcium Silicate on Direct Pulp Capping: Experimental Study in Rats. European journal of dentistry, 15(1), 101–108.

Chiquet-Ehrismann R. (1990). What distinguishes tenascin from fibronectin? FASEB journal: official publication of the Federation of American Societies for Experimental Biology, 4(9), 2598–2604.

Cosme-Silva, L., Gomes-Filho, J. E., Benetti, F., Dal-Fabbro, R., Sakai, V. T., Cintra, L., Ervolino, E., & Viola, N. V. (2019a). Biocompatibility and immunohistochemical evaluation of a new calcium silicate-based cement, Bio-C Pulpo. International endodontic journal, 52(5), 689–700.

Cosme-Silva, L., Dal-Fabbro, R., Gonçalves, L. O., Prado, A., Plazza, F. A., Viola, N. V., Cintra, L., & Gomes Filho, J. E. (2019b). Hypertension affects the biocompatibility and biomineralization of MTA, High-plasticity MTA, and Biodentine®. Brazilian oral research, 33, e060.

Cuadros-Fernández, C., Lorente Rodríguez, A. I., Sáez-Martínez, S. et al. (2016). Short-term treatment outcome of pulpotomies in primary molars using mineral trioxide aggregate and Biodentine: a randomized clinical trial. Clinical Oral Investigation, 20(7), 1639–1645.

Cushley, S., Duncan, H. F., Lappin, M. J., Chua, P., Elamin, A. D., Clarke, M., & El-Karim, I. A. (2021). Efficacy of direct pulp capping for management of cariously exposed pulps in permanent teeth: a systematic review and meta-analysis. International endodontic journal, 54(4), 556–571.

Dammaschke, T., Gerth, H. U., Züchner, H., & Schäfer, E. (2005). Chemical and physical surface and bulk material characterization of white ProRoot MTA and two Portland cements. Dental materials: official publication of the Academy of Dental Materials, 21(8), 731–738.

De Rossi, A., Silva, L. A., Gatón-Hernández, P., Sousa-Neto, M. D., Nelson-Filho, P., Silva, R. A., & de Queiroz, A. M. (2014). Comparison of pulpal responses to pulpotomy and pulp capping with biodentine and mineral trioxide aggregate in dogs. Journal of endodontics, 40(9), 1362–1369.

Dezan-Júnior, E., Bueno, C. R. E., Vasques, A. M. V., Souza, V., de Nery, M. J., Otoboni Filho, J. A., Bernabé, P. F. E., Gomes-Filho, J. E., Cintra, L. T. A., Jacinto, R. C., Sivieri-Araújo, G., & Holland, R. (2021). Influence of different obturation techniques in coronal bacterial infiltration: study in dogs. Research, Society and Development, 10(4), e11010413884.

Esmeraldo, M. R., Carvalho, M. G., Carvalho, R. A., Lima, R., & Costa, E. M. (2013). Inflammatory effect of green propolis on dental pulp in rats. Brazilian oral research, 27(5), 417–422.

Estrela, C., & Holland, R. (2003). Calcium hydroxide: study based on scientific evidences. Journal of applied oral science: revista FOB, 11(4), 269–282.

Faraco, I. M. Jr & Holland, R. (2001). Response of the pulp of dogs to capping with mineral trioxide aggregate or a calcium hydroxide cement. Dental traumatology : official publication of International Association for Dental Traumatology, 17(4), 163–166.

Grinnell F. (1984). Fibronectin and wound healing. Journal of cellular biochemistry, 26(2), 107–116.

Holan, G., Eidelman, E., & Fuks, A. B. (2005). Long-term evaluation of pulpotomy in primary molars using mineral trioxide aggregate or formocresol. Pediatric dentistry, 27(2), 129–136.

Hung, C. J., Hsu, H. I., Lin, C. C., Huang, T. H., Wu, B. C., Kao, C. T., & Shie, M. Y. (2014). The role of integrin αv in proliferation and differentiation of human dental pulp cell response to calcium silicate cement. Journal of endodontics, 40(11), 1802–1809.

Koubi, G., Colon, P., Franquin, J. C., Hartmann, A., Richard, G., Faure, M. O., & Lambert, G. (2013). Clinical evaluation of the performance and safety of a new dentine substitute, Biodentine, in the restoration of posterior teeth - a prospective study. Clinical oral investigations, 17(1), 243–249.

Lacativa, A. M., Loyola, A. M., & Sousa, C. J. (2012). Histological evaluation of bone response to pediatric endodontic pastes: an experimental study in guinea pig. Brazilian dental journal, 23(6), 635–644.

Laurent, P., Camps, J., & About, I. (2012). Biodentine(TM) induces TGF-β1 release from human pulp cells and early dental pulp mineralization. International endodontic journal, 45(5), 439–448.

Leite, M. L., Soares, D. G., Anovazzi, G., Anselmi, C., Hebling, J., & de Souza Costa, C. A. (2021). Fibronectin-loaded Collagen/Gelatin Hydrogel Is a Potent Signaling Biomaterial for Dental Pulp Regeneration. Journal of endodontics, 47(7), 1110–1117.

Leites, A. B., Baldissera, E. Z., Silva, A. F., Tarquinio, S., Botero, T., Piva, E., & Demarco, F. F. (2011). Histologic response and tenascin and fibronectin expression after pulp capping in pig primary teeth with mineral trioxide aggregate or calcium hydroxide. Operative dentistry, 36(4), 448–456.

Lesot, H., Begue-Kirn, C., Kubler, M. D., Meyer, J. M., Smith, A. J., Cassidy, N., & Ruch, J. V. (1993). Experimental Induction of Odontoblast Differentiation and Stimulation Durante Processos Preparativos. Cells and Materials. 3(2), 201-217.

Lima, R. V., Esmeraldo, M. R., de Carvalho, M. G., de Oliveira, P. T., de Carvalho, R. A., da Silva, F. L., Jr, & de Brito Costa, E. M. (2011). Pulp repair after pulpotomy using different pulp capping agents: a comparative histologic analysis. Pediatric dentistry, 33(1), 14–18.

Marques, M. S., Wesselink, P. R., & Shemesh, H. (2015). Outcome of Direct Pulp Capping with Mineral Trioxide Aggregate: A Prospective Study. Journal of endodontics, 41(7), 1026–1031.

Martins, C. M., Sasaki, H., Hirai, K., Andrada, A. C., & Gomes-Filho, J. E. (2016). Relationship between hypertension and periapical lesion: an in vitro and in vivo study. Brazilian oral research, 30(1), e78.

Minamikawa, H., Yamada, M., Deyama, Y., Suzuki, K., Kaga, M., Yawaka, Y., & Ogawa, T. (2011). Effect of N-acetylcysteine on rat dental pulp cells cultured on mineral trioxide aggregate. Journal of endodontics, 37(5), 637–641.

Minic, S., Florimond, M., Sadoine, J., Valot-Salengro, A., Chaussain, C., Renard, E., & Boukpessi, T. (2021). Evaluation of Pulp Repair after BiodentineTM Full Pulpotomy in a Rat Molar Model of Pulpitis. Biomedicines, 9(7), 784.

Moradi, S., Saghravanian, N., Moushekhian, S., Fatemi, S., & Forghani, M. (2015). Immunohistochemical Evaluation of Fibronectin and Tenascin Following Direct Pulp Capping with Mineral Trioxide Aggregate, Platelet-Rich Plasma and Propolis in Dogs' Teeth. Iranian endodontic journal, 10(3), 188–192.

Murray, G. G., Teixeira, L. M., Oliveira, D. L., Jacomini, L. M., & Silva, S. R. (2003). Biocompatibility evaluation of Biodentine in subcutaneous tissue of rats. International Endodontic Journal, 36(2), 106-116.

Nowicka, A., Wilk, G., Lipski, M., Kołecki, J., & Buczkowska-Radlińska, J. (2015). Tomographic Evaluation of Reparative Dentin Formation after Direct Pulp Capping with Ca(OH)2, MTA, Biodentine, and Dentin Bonding System in Human Teeth. Journal of endodontics, 41(8), 1234–1240.

Paranjpe, A., Zhang, H., & Johnson, J. D. (2010). Effects of mineral trioxide aggregate on human dental pulp cells after pulp-capping procedures. Journal of endodontics, 36(6), 1042–1047.

Parirokh, M., Torabinejad, M., & Dummer, P. (2018). Mineral trioxide aggregate and other bioactive endodontic cements: an updated overview - part I: vital pulp therapy. International endodontic journal, 51(2), 177–205.

Piva, E., Tarquinio, S. B., Demarco, F. F., Silva, A. F., & de Araujo, V. C. (2006). Immunohistochemical expression of fibronectin and tenascin after direct pulp capping with calcium hydroxide. Oral Surgery, Oral Medicine, Oral Pathology and Oral Radiology, 102(4), 66-71.

Sage, E. H., & Bornstein, P. (1991). Extracellular proteins that modulate cell-matrix interactions. SPARC, tenascin, and thrombospondin. The Journal of biological chemistry, 266(23), 14831–14834.

Salako, N., Joseph, B., Ritwik, P., Salonen, J., John, P., & Junaid, T. A. (2003). Comparison of bioactive glass, mineral trioxide aggregate, ferric sulfate, and formocresol as pulpotomy agents in rat molar. Dental traumatology: official publication of International Association for Dental Traumatology, 19(6), 314–320.

Schuurs, A. H. B., Gruythuysen, R. J. M., & Wesselink, P. R. (2000). Pulp capping with adhesive resinbased composite versus calcium hydroxide: a review. Endodontics & dental traumatology, 16, 240–250.

Shayegan, A., Jurysta, C., Atash, R., Petein, M., & Abbeele, A. V. (2012). Biodentine used as a pulp-capping agent in primary pig teeth. Pediatric Dentistry, 34(7), 202-208.

Shrestha, P., Sumitomo, S., Lee, C. H., Nagahara, K., Kamegai, A., Yamanaka, T., Takeuchi, H., Kusakabe, M., & Mori, M. (1996). Tenascin: growth and adhesion modulation--extracellular matrix degrading function: an in vitro study. European journal of cancer. Part B, Oral oncology, 32(2), 106–113.

Silva, L., Lopes, Z., Sá, R. C., Novaes Júnior, A. B., Romualdo, P. C., Lucisano, M. P., Nelson-Filho, P., & Silva, R. (2019). Comparison of apical periodontitis repair in endodontic treatment with calcium hydroxide-dressing and aPDT. Brazilian oral research, 33, e092.

Tawil, P. Z., Duggan, D. J., & Galicia, J. C. (2015). Mineral trioxide aggregate (MTA): its history, composition, and clinical applications. Compendium of continuing education in dentistry (Jamesburg, N.J. 1995), 36(4), 247–264.

Thesleff, I., Mackie, E., Vainio, S., & Chiquet-Ehrismann, R. (1987). Changes in the distribution of tenascin during tooth development. Development (Cambridge, England), 101(2), 289–296.

Torabinejad, M., Parirokh, M., & Dummer, P. (2018). Mineral trioxide aggregate and other bioactive endodontic cements: an updated overview - part II: other clinical applications and complications. International endodontic journal, 51(3), 284–317.

Tziafas, D. (1994). Mechanisms controlling secondary initiation of dentinogenesis: a review. International Endodontic Journal, 27(2), 61-74.

Tziafas, D., Alvanou, A., Panagiotakopoulos, N., Smith, A. J., Lesot, H., Komnenou, A., & Ruch, J. V. (1995). Induction of odontoblast-like cell differentiation in dog dental pulps after in vivo implantation of dentine matrix components. Archives of oral biology, 40(10), 883–893.

Valentim, D., Bueno, C. R. E., Marques, V. A. S., Benetti, F., Vasques, A. M. V., Cury, M. T. S., Silva, A. C.R., jacinto, R. C., Sivieri-Araujo, G., Cintra, L. T. A., & Dezan-Junior, E. (2021). Avaliação da biocompatibilidade de cimentos reparadores biocerâmicos: Estudo in vivo em ratos wistar. Research, Society and Development, 10(7), 1-10.

Yaemkleebbua, K., Osathanon, T., Nowwarote, N., Limjeerajarus, C. N., & Sukarawan, W. (2019). Analysis of hard tissue regeneration and Wnt signalling in dental pulp tissues after direct pulp capping with different materials. International endodontic journal, 52(11), 1605–1616.



How to Cite

VALENTIM, D. .; BUENO, C. R. E.; VASQUES, A. M. V.; BENETTI, F.; CURY, M. T. S. .; SILVA , A. C. R. da .; JACINTO, R. . C.; SIVIERI ARAÚJO, G. .; GOMES-FILHO, J. E. .; ERVOLINO, E. .; CINTRA, L. T. A. .; DEZAN-JUNIOR, E. . Inflammatory and immunohistochemical evaluation of bioceramic repair materials after pulpotomy: study in wistar rats. Research, Society and Development, [S. l.], v. 10, n. 10, p. e424101018480, 2021. DOI: 10.33448/rsd-v10i10.18480. Disponível em: Acesso em: 5 dec. 2021.



Health Sciences