Bibliometric study of international scientific production on the use of natural products as a therapy for pancreatic cancer

Authors

DOI:

https://doi.org/10.33448/rsd-v10i10.18586

Keywords:

Bibliometrics; Pancreatic Neoplasms; Biological Products; Drug therapy.

Abstract

Introduction: Due to the high rate of invasion, malignancy and asymptomatic development, pancreatic cancer is highly lethal. A small number of drugs is available for its approach. Objective: Given this, the present study aims to map the international scientific production on the use of natural products as therapy for pancreatic cancer. Method: Bibliometric research was carried out on academic works on the Web of Science published from 1998 to 2019 using the search terms: "pancreatic cancer", "therapy" and "natural product". After applying the refinement filters, 123 publication records were identified in 82 different journals indexed to the database in question, written by 755 authors who have links to 237 institutions, located in 37 countries. Result: The distribution of the number of publications per year, the most cited and most related journals, the top journals with the most citations, the number of articles by country of origin of the authors' link institutions, the most cited articles were evaluated. and the co-occurrence of the most cited and most related words. Conclusion: Although recent publications have identified mechanisms of action involved in the interaction of various natural products with pancreatic cancer, we are far from understanding the spectrum of effects that natural therapy has on normal and cancer cells. Further studies on the topic are expected to be carried out and the quantity and quality of publications on the topic are expected to grow even more.

References

Atlas On-line de Mortalidade: Instituto Nacional de Câncer e Ministério da Saúde. https://www.inca.gov.br/MortalidadeWeb/pages/ Modelo01/consultar.xhtml.

Chen, S. T., Dou, J., Temple, R., Agarwal, R., Wu, K. M., & Walker, S. (2008). New therapies from old medicines. Nature Biotechnology, 26(10), 1077-1083. http://dx.doi.org/10.1038/nbt1008-1077.

Ding, L., Madamsetty, V. S., Kiers, S., Alekhina, O., Ugolkov, A., Dube, J., Zhang, Y., Zhang, J.S., Wang, E., Dutta, S. K., Schmitt, D. M., Giles, F. J., Kozikowski, A.P., Mazar, A.P., Mukhopadhyay, D., & Billadeau, D. D. (2019). Glycogen synthase kinase-3 inhibition sensitizes pancreatic cancer cells to chemotherapy by abrogating the TopBP1/ATR-mediated DNA damage response. Clinical Cancer Research, 25(21), 6452-6462. https://doi.org/ 10.1158/1078-0432.CCR-19-079.

Gaisina, I. N., Gallier, F., Ougolkov, A. V., Kim, K. H., Kurome, T., Guo, S., Holzle, D., Luchini, D. N., Bolnd, S. Y., Billadeu, D. D., & Kozikowski, A. P. (2009). From a natural product lead to the identification of potent and selective benzofuran-3-yl-(indol-3-yl) maleimides as glycogen synthase kinase 3β inhibitors that suppress proliferation and survival of pancreatic cancer cells. Journal of medicinal chemistry, 52(7), 1853-1863. http://dx.doi.org/10.1021/jm801317h.

Gou, M., Men, K., Shi, H., Xiang, M., Zhang, J., Song, J., Long J., Wang, Y., Luo, F., Zhao, X., & Qian, Z. (2011). Curcumin-loaded biodegradable polymeric micelles for colon cancer therapy in vitro and in vivo. Nanoscale, 3(4), 1558-1567. http://dx.doi.org/10.1039/c0nr00758g.

Heretsch, P., Tzagkaroulaki, L., & Giannis, A. (2010). Moduladores da via de sinalização do ouriço. Bioorganic & medicinalochemical , 18 (18), 6613-6624. http://dx.doi.org/10.1016/j.bmc.2010.07.038.

Ko, J. H., Sethi, G., Um, J. Y., Shanmugam, M. K., Arfuso, F., Kumar, A. P., & Ahn, K. S. (2017). The role of resveratrol in cancer therapy. International journal of molecular sciences, 18(12), 2589. http://dx.doi.org/10.3390/ijms18122589.

Luo, G., Zhang, Y., Guo, P., Ji, H., Xiao, Y., & Li, K. (2019). Global patterns and trends in pancreatic cancer incidence: age, period, and birth cohort analysis. Pancreas, 48(2), 199-208. http://dx.doi.org/10.1097/mpa.0000000000001230.

Mohammed, A., Janakiram, N. B., Pant, S., & Rao, C. V. (2015). Molecular targeted intervention for pancreatic cancer. Cancers, 7(3), 1499-1542. http://dx.doi.org/10.3390/cancers7030850.

Paulson, A. S., Cao, H. S. T., Tempero, M. A., & Lowy, A. M. (2013). Therapeutic advances in pancreatic cancer. Gastroenterology, 144(6), 1316-1326. : http://dx.doi.org/10.1053/j.gastro.2013.01.078.

Perkhofer, L., Ettrich, T. J., & Seufferlein, T. (2014). Pancreatic cancer: progress in systemic therapy. Gastrointestinal tumors, 1(4), 167-179. http://dx.doi.org/10.1159/000380785.

Siegel, R. L., Miller, K. D., & Jemal, A. (2020). Cancer statistics, 2020. CA: a cancer journal for clinicians, 70(1), 7–30. https://doi.org/10.3322/caac.21590.

Souza, M. C.; Silva, M. D. & Carvalho, R. (2010). Revisão integrativa: O que é e como fazer? Einstein, 8(1): 102-6.

Torres, M. P., Ponnusamy, M. P., Chakraborty, S., Smith, L. M., Das, S., Arafat, H. A., & Batra, S. K. (2010). Effects of thymoquinone in the expression of mucin 4 in pancreatic cancer cells: implications for the development of novel cancer therapies. Molecular cancer therapeutics, 9(5), 1419-1431. http://dx.doi.org/10.1158/1535-7163.MCT-10-0075.

Torres, M. P., Rachagani, S., Purohit, V., Pandey, P., Joshi, S., Moore, E. D., & Batra, S. K. (2012). Graviola: a novel promising natural-derived drug that inhibits tumorigenicity and metastasis of pancreatic cancer cells in vitro and in vivo through altering cell metabolism. Cancer letters, 323(1), 29-40. http://dx.doi.org/10.1016/j.canlet.2012.03.031.

Torres, M. P., Rachagani, S., Purohit, V., Pandey, P., Joshi, S., Moore, E. D., Johansson, S. L., Singh, P. K., Ganti, A. K., & Batra, S. K. (2012). Graviola: A novel promising natural-derived drug that inhibits tumorigenicity and metastasis of pancreatic cancer cells in vitro and in vivo through altering cell metabolism. Cancer Letters, 323(1), 29–40. https://doi.org/10.1016/j.canlet.2012.03.031.

Tremblay, M. R., Lescarbeau, A., Grogan, M. J., Tan, E., Lin, G., Austad, B. C., Yu, L.-C., Behnke, M. L., Nair, S. J., Hagel, M., White, K., Conley, J., Manna, J. D., Alvarez-Diez, T. M., Hoyt, J., Woodward, C. N., Sydor, J. R., Pink, M., MacDougall, J., & Campbell, M. J. (2009). Discovery of a Potent and Orally Active Hedgehog Pathway Antagonist (IPI-926). Journal of Medicinal Chemistry, 52(14), 4400–4418. https://doi.org/10.1021/jm900305z.

Wang, W., Rayburn, E. R., Zhao, Y., Wang, H., & Zhang, R. (2009). Novel ginsenosides 25-OH-PPD and 25-OCH3-PPD as experimental therapy for pancreatic cancer: anticancer activity and mechanisms of action. Cancer letters, 278(2), 241-248. http://dx.doi.org/10.1016/j.canlet.2009.01.005.

Wyke, S. M., Russell, S. T., & Tisdale, M. J. (2004). Induction of proteasome expression in skeletal muscle is attenuated by inhibitors of NF-κ B activation. British journal of cancer, 91(9), 1742-1750. http://dx.doi.org/10.1038/sj.bjc.6602165.

Zhang, Q., Tang, X., Lu, Q. Y., Zhang, Z. F., Brown, J., & Le, A. D. (2005). Resveratrol inhibits hypoxia-induced accumulation of hypoxia-inducible factor-1α and VEGF expression in human tongue squamous cell carcinoma and hepatoma cells. Molecular cancer therapeutics, 4(10), 1465-1474. http://dx.doi.org/10.1158/1535-7163.MCT-05-0198.

Published

06/08/2021

How to Cite

GUERRA, B. M. M. D.; MASCARENHAS, C. C. de A.; RODRIGUES , R. V. B. L.; CARVALHO, M. N.; NERY, R. P.; ROCHA, I. L. da; BARROS, M. A. L.; SOUSA, A. L. A. de; PINTO, A. S. B. Bibliometric study of international scientific production on the use of natural products as a therapy for pancreatic cancer. Research, Society and Development, [S. l.], v. 10, n. 10, p. e96101018586, 2021. DOI: 10.33448/rsd-v10i10.18586. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/18586. Acesso em: 26 nov. 2024.

Issue

Section

Health Sciences